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Significant viewpoint and/or scale change
Significant illumination change
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“Lots of Training Examples”

Large Internet 
photo collection

…

Convolutional Neural 
Network (CNN)

Not accurate
Expensive $$

Manual cleaning of
the training data

done by Researchers
Very expensive $$$$

Automated extraction
of training data

Very accurate
Free $



Off-the-shelf  CNN

• Target application: classification
• Training dataset: ImageNet
• Architecture: AlexNet & VGG

• Directly applicable to other tasks

Images from ImageNet.org

Fine-grain classification

Images from ImageNet.org

Object detection

Images from PASCAL VOC 2012

Image retrieval



Annotations for CNN Image Retrieval
• CNN pre-trained for classification task used for retrieval

[Gong et al. ECCV’14, Babenko et al. ICCV’15, Kalantidis et al. arXiv’15, Tolias et al. ICLR’16]

• Fine-tuned CNN using a dataset with landmark classes
[Babenko et al. ECCV’14]

• NetVLAD: Weakly supervised 
fine-tuned CNN using GPS tags
[Arandjelovic et al. CVPR’16]

• We propose: automatic annotations for CNN training

Building class

Landmark class

spatially closest ≠ matching

Hard positives Hard negatives



CNN learns from BoW – Training Data
Camera Orientation Known

Number of Inliers Known

7.4M images à 713 training 3D models
[Schonberger et al. CVPR’15]
[Radenovic et al. CVPR’16]



Hard Negative Examples

query the most similar
CNN descriptor

naive hard negatives
top k by CNN

diverse hard negatives
top k: one per 3D model

Negative examples: images from different 3D models than the query
Hard negatives: closest negative examples to the query
Only hard negatives: as good as using all negatives, but faster

redundant

increasing CNN descriptor distance to the query



Hard Positive Examples

query top 1 by CNN top 1 by BoW
random from 
top k by BoW

harder positives

used in NetVLAD

Positive examples: images that share 3D points with the query
Hard positives: positive examples not close enough to the query
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CNN
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Convolutional Layers Pooling Descriptor

Contrastive
Loss

1 – positive
0 – negative

Pair Label

NON-MATCHING PAIR

Contrastive vs. Triplet loss: Contrastive better with our data
Contrastive loss more strict, requires accurate training data
Triplet loss less sensitive to inaccurate annotation



Whitening and dimensionality reduction

1. PCAw – PCA of an independent set of descriptors
[Babenko et al. ICCV’15, Tolias et al. ICLR’16]

2. Lw – We propose to learn whitening using labeled 
training data and linear discriminant projections
[Mikolajczyk & Matas ICCV’07]
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Experiments – datasets
• Oxford 5k dataset

[Philbin et al. CVPR’07]

• Paris 6k dataset
[Philbin et al. CVPR’08]

• Holidays dataset
[Jegou et al. ECCV’10]

• 100k distractor dataset
[Philbin et al. CVPR’07]

• Protocol: mean Average Precision (mAP)

Training 3D models do not 
contain any landmark from 

these datasets



Experiments – Learning (AlexNet)

• Careful choice of positive and negative training 
images makes a difference

Oxford 5k Paris 6k
Off-the-shelf

top 1 CNN + top k CNN

top 1 CNN + top 1 / model CNN

top 1 BoW + top 1 / model CNN

random(top k BoW) + top 1 / model CNN

44.2

51.6

56.2

63.1

56.7

63.9

59.7

67.1

62.2

68.9

60.2

67.5Our learned whitening



Experiments – Over-fitting and Generalization

• We added Oxford and Paris landmarks as 3D 
models and repeated fine-tuning 

Only +0.3 mAP on average over all 
testing datasets



State-of-the-art

63.5

69.2

NetVLAD 256D 
vs.

Our CNN 32D

Concurrent work: 
[Gordo et al. ECCV’16]



Teacher vs. Student

Our CNN with re-ranking (R) and query expansion(QE) 
surpasses its teacher on all datasets!!!

Method Oxf5k Oxf105k Par6k Par106k

BoW(16M)+R+QE 84.9 79.5 82.4 77.3
CNN(512D) 79.7 73.9 82.4 74.6
CNN(512D)+R+QE 85.0 81.8 86.5 78.8
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first incorrect at rank 159

Teacher vs. Student

query top 10 (correct | incorrect)

BoW

CNN

Fine-tuning
might not be enough



Conclusions

• We propose a method to generate the 
necessary “lots of training examples” without 
any human interaction

• Strong supervision for hard negative, hard 
positive mining, and supervised whitening

• Data and trained networks available at:
cmp.felk.cvut.cz/~radenfil/projects/siamac.html

• For more details about the paper visit Poster O-1A-01

http://cmp.felk.cvut.cz/~radenfil/projects/siamac.html

