

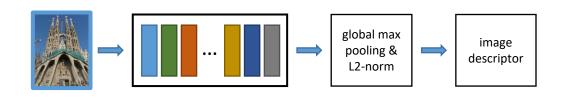
Filip Radenović Giorgos Tolias Ondřej Chum

Center for Machine Perception, CTU in Prague

ECCV 2016

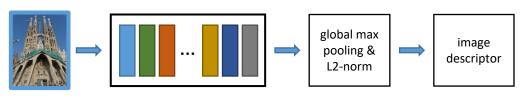
CNN Image Retrieval

compact image descriptors Nearest Neighbor search



### **CNN Image Retrieval**

compact image descriptors Nearest Neighbor search

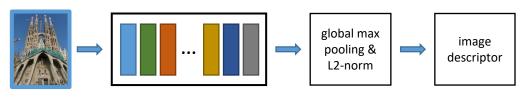


### CNN Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

### **CNN Image Retrieval**

compact image descriptors Nearest Neighbor search



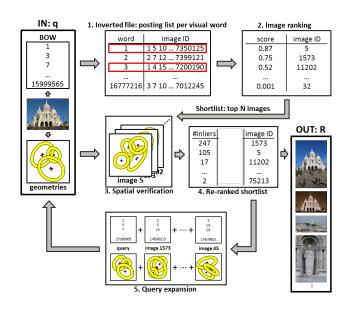
### CNN Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters)

re-train with data relevant to your task

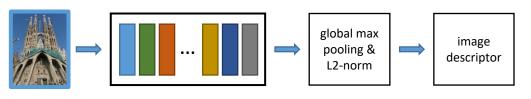
### Bag of Words

state-of-the-art retrieval performance couples well with SfM



### **CNN Image Retrieval**

compact image descriptors Nearest Neighbor search



### CNN Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

### Bag of Words

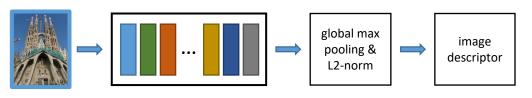
state-of-the-art retrieval performance couples well with SfM

### Unsupervised training data generation

no human interaction

### **CNN Image Retrieval**

compact image descriptors Nearest Neighbor search



### CNN Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

### Bag of Words

state-of-the-art retrieval performance couples well with SfM

### Unsupervised training data generation

no human interaction

Hard Examples







hard positives

hard **negatives** 

Significant viewpoint and/or scale change Significant illumination change Severe occlusions Visually similar but different objects

### BoW: affine co-variant local features, invariant descriptors CNN: lots of training examples



Significant viewpoint and/or scale change
Significant illumination change
Severe occlusions
Visually similar but different objects

BoW: color-normalized feature descriptors CNN: lots of training examples



Significant viewpoint and/or scale change Significant illumination change

Severe occlusions

Visually similar but different objects

### BoW: locality of the features, geometric verification CNN: lots of training examples



Significant viewpoint and/or scale change Significant illumination change Severe occlusions

Visually similar but different objects

### BoW: discriminability of the features, geometric verification CNN: lots of training examples



# "Lots of Training Examples"

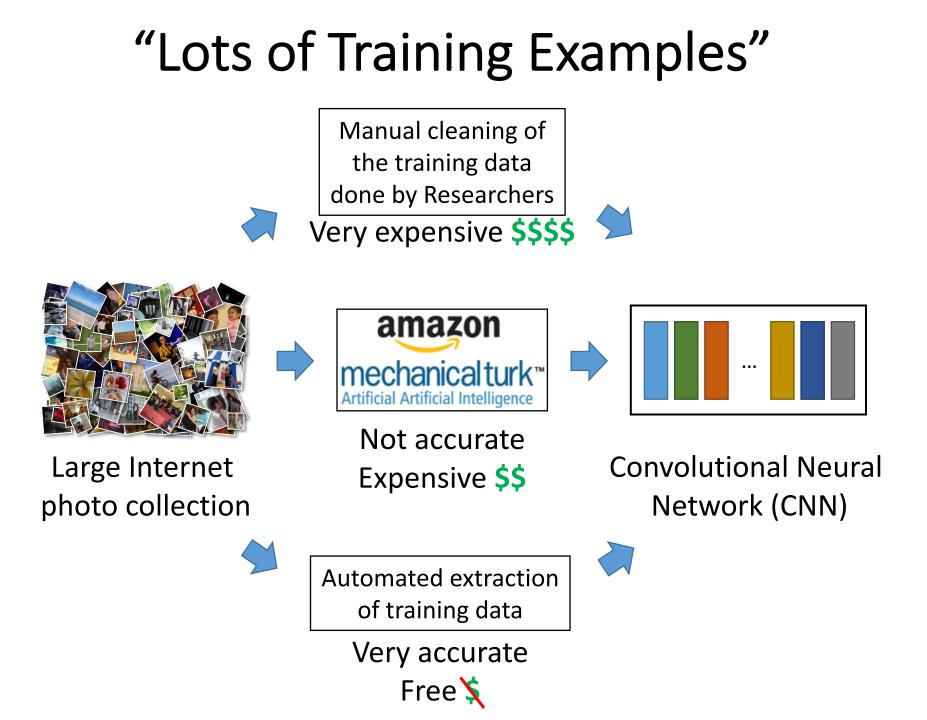


Training Image annotations



Convolutional Neural Network (CNN)

Large Internet photo collection



# Off-the-shelf CNN

- Target application: classification
- Training dataset: ImageNet
- Architecture: AlexNet & VGG



Images from ImageNet.org

• Directly applicable to other tasks

Fine-grain classification

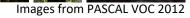


Images from ImageNet.org

**Object detection** 







#### Image retrieval







# Annotations for CNN Image Retrieval

CNN pre-trained for classification task used for retrieval

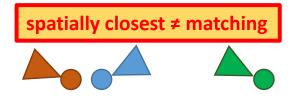
[Gong et al. ECCV'14, Babenko et al. ICCV'15, Kalantidis et al. arXiv'15, Tolias et al. ICLR'16]



Fine-tuned CNN using a dataset with landmark classes



• NetVLAD: Weakly supervised fine-tuned CNN using GPS tags [Arandjelovic et al. CVPR'16]



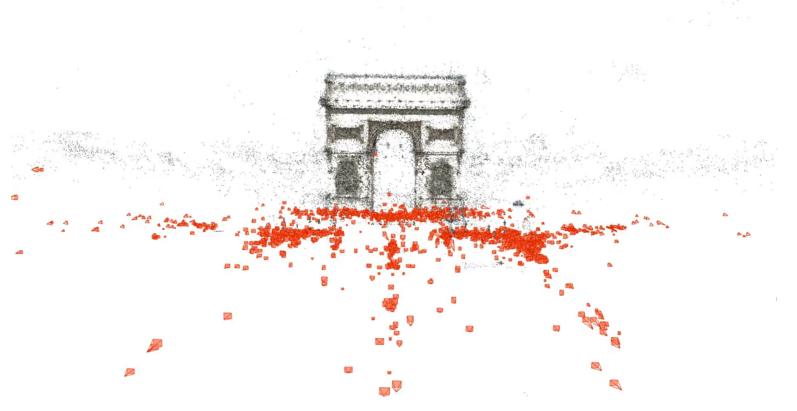
We propose: automatic annotations for CNN training





# CNN learns from BoW – Training Data

### Camera Orientation Known Number of Inliers Known



[Schonberger et al. CVPR'15] [Radenovic et al. CVPR'16]

7.4M images  $\rightarrow$  713 training 3D models

# Hard Negative Examples

Negative examples: images from different 3D models than the query Hard negatives: closest negative examples to the query Only hard negatives: as good as using all negatives, but faster

#### increasing CNN descriptor distance to the query

query

the most similarnaive hard negativesCNN descriptortop k by CNN

diverse hard negatives top k: one per 3D model



















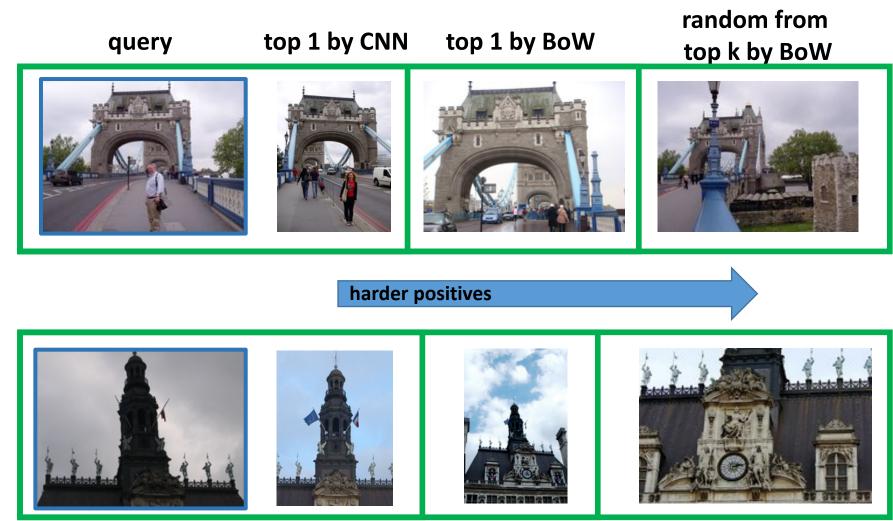






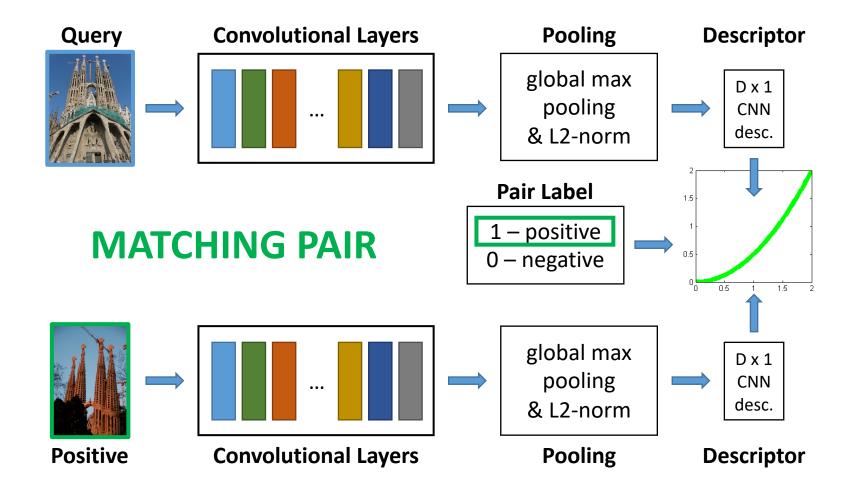
# Hard Positive Examples

**Positive examples:** images that share 3D points with the query **Hard positives:** positive examples not close enough to the query

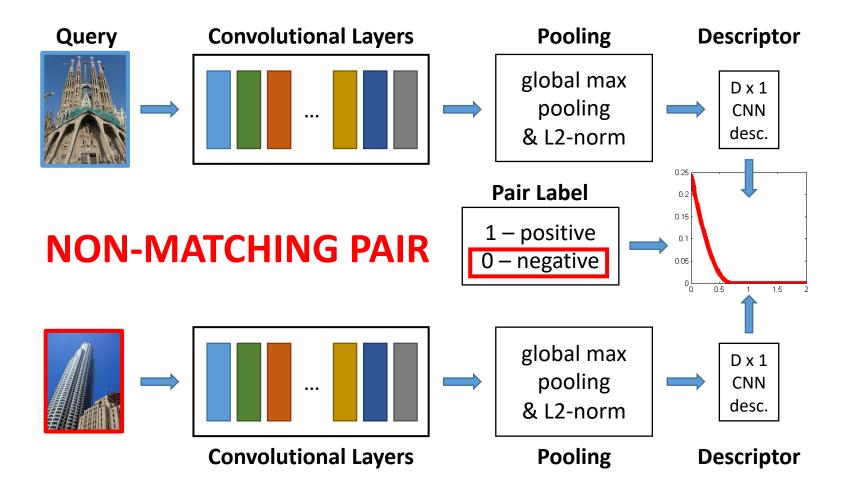


used in NetVLAD

# **CNN Siamese Learning**



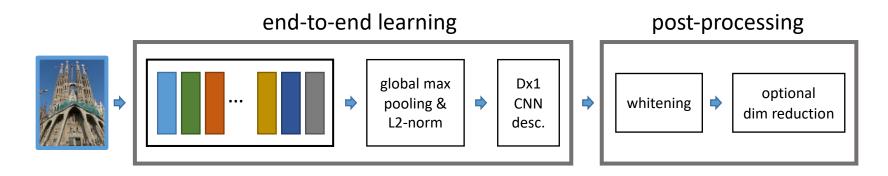
# **CNN Siamese Learning**



**Contrastive vs. Triplet loss: Contrastive better with our data** 

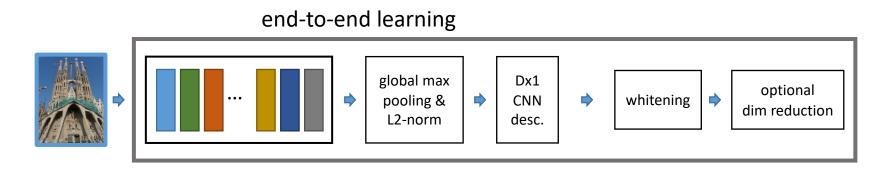
Contrastive loss more strict, requires accurate training data Triplet loss less sensitive to inaccurate annotation

### Whitening and dimensionality reduction



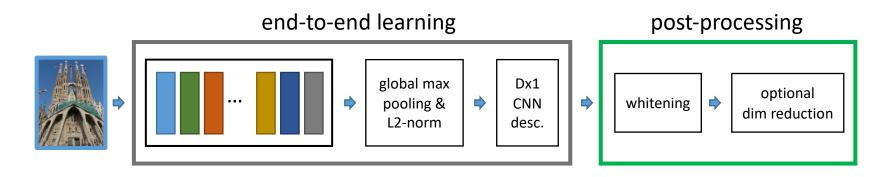
- 1. PCA<sub>w</sub> PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- L<sub>w</sub> We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]

### Whitening and dimensionality reduction



- 1. PCA<sub>w</sub> PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- L<sub>w</sub> We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]
- 3. End-to-end Learning Performs comparable or worse than L<sub>w</sub>, while slowing down the convergence

### Whitening and dimensionality reduction



- 1. PCA<sub>w</sub> PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- L<sub>w</sub> We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]
- 3. End-to-end Learning Performs comparable or worse than L<sub>w</sub>, while slowing down the convergence

# Experiments – datasets

- Oxford 5k dataset [Philbin et al. CVPR'07]
- Paris 6k dataset [Philbin et al. CVPR'08]
- Holidays dataset [Jegou et al. ECCV'10]







• 100k distractor dataset [Philbin et al. CVPR'07] Training 3D models do not contain any landmark from these datasets

• Protocol: mean Average Precision (mAP)

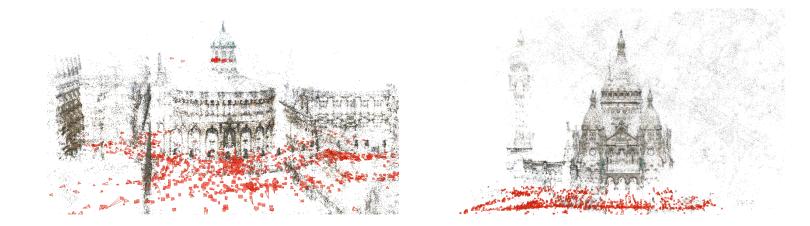
# Experiments – Learning (AlexNet)

 Careful choice of positive and negative training images makes a difference



### Experiments – Over-fitting and Generalization

 We added Oxford and Paris landmarks as 3D models and repeated fine-tuning



# Only +0.3 mAP on average over all testing datasets

|                        | Method                                     |                          | D    | Ox                          | f5k                       | Oxf                         | 105k                        | Pa                          | r6k                       | Par                         | 106k                      | Hol          | Hol   |
|------------------------|--------------------------------------------|--------------------------|------|-----------------------------|---------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|--------------|-------|
|                        |                                            |                          | D    | $\mathtt{Crop}_\mathcal{I}$ | ${\tt Crop}_{\mathcal X}$ | $\mathtt{Crop}_\mathcal{I}$ | $\mathtt{Crop}_\mathcal{X}$ | $\mathtt{Crop}_\mathcal{I}$ | ${\tt Crop}_{\mathcal X}$ | $\mathtt{Crop}_\mathcal{I}$ | ${\tt Crop}_{\mathcal X}$ |              | 101k  |
| State-of-the-art       | Compact representations                    |                          |      |                             |                           |                             |                             |                             |                           |                             |                           |              |       |
|                        | mVoc/BoW [11]                              |                          |      | 48.8                        | -                         | 41.4                        | —                           | —                           | -                         | _                           | _                         | 65.6         |       |
|                        | Neural codes <sup>†</sup> [14]             | $(\mathbf{fA})$          |      |                             | 55.7                      |                             | 52.3                        |                             | -                         | -                           | -                         | 78.9         |       |
|                        | MAC <sup>‡</sup>                           |                          |      |                             | 55.7                      |                             |                             |                             |                           | 1                           | 55.4                      | 72.6         | 56.7  |
|                        | CroW [24]<br>$\star MAC$                   |                          |      | 59.2                        |                           | 51.6                        |                             | 74.6                        | 1                         | 63.2                        | 60.0                      | -<br>79.0    | -     |
|                        | ★ MAC<br>★ R-MAC                           |                          |      |                             |                           |                             |                             |                             |                           |                             | 69.0<br><b>71.2</b>       |              |       |
|                        | MAC <sup>‡</sup>                           | × /                      |      |                             |                           |                             |                             |                             |                           |                             | 57.3                      |              |       |
|                        | SPoC [23]                                  | $(\mathbf{V})$           |      |                             | 53.1                      |                             | <b>50.1</b>                 |                             | 12.4                      |                             | 57.5                      | 80.2         |       |
|                        | R-MAC [25]                                 |                          |      | 56.1                        | -                         | 47.0                        | _                           | 72.9                        | _                         | 60.1                        | _                         | _            | _     |
|                        | CroW [24]                                  |                          |      | 65.4                        | _                         | 59.3                        | _                           | 77.9                        | _                         | 67.8                        | _                         | 83.1         | _     |
|                        | NetVlad [35]                               | $(\mathbf{V})$           |      |                             |                           |                             | _                           | _                           | 67.7                      | _                           | _                         | <b>86.0</b>  | _     |
|                        | NetVlad [35]                               | $(\mathbf{fV})$          | 958  | 6                           | <b>53.</b> !              | 5                           | _                           | —                           | 73.5                      | _                           | _                         | 84.3         | _     |
|                        | * MAC                                      | $(\mathbf{fA})$          |      | 6                           |                           |                             |                             | 68.9                        |                           | 1                           | 58.5                      | 76.2         |       |
| NetVLAD 256D           | $\star$ R-MAC                              |                          |      |                             |                           |                             |                             |                             |                           |                             | 64.8                      |              |       |
|                        | * MAC                                      | × /                      |      |                             |                           |                             |                             |                             |                           |                             | 73.4                      |              |       |
|                        | ★ R-MAC                                    | × /                      |      |                             |                           |                             |                             |                             |                           | 1                           | 75.6                      |              |       |
|                        | MAC <sup>‡</sup>                           |                          |      |                             |                           |                             |                             |                             |                           |                             | <b>59.1</b>               | 76.7         | 62.7  |
| VS.                    | R-MAC [25]                                 |                          |      | 66.9                        |                           | 61.6                        |                             | <b>83.0</b><br>79.6         | _                         | <b>75.7</b><br>71.0         |                           | - 84.0       | _     |
|                        | CroW [24]<br>$\star MAC$                   | · · · · ·                |      | 68.2<br>70.7                |                           | 63.2<br>73 0                |                             |                             | 82.0                      |                             | 75.3                      | 84.9<br>70.5 | 67.0  |
|                        | ★ R-MAC                                    |                          |      |                             |                           |                             |                             |                             |                           |                             | <b>77.9</b>               |              |       |
| Our CNN 32D 🔍          |                                            | (1)                      | 012  |                             |                           |                             |                             |                             | 00.0                      |                             |                           | 02.0         | . 110 |
| OUI CIVIN JZD          | Namel and st [14]                          | ( <b>£ A</b> )           | 10   |                             |                           |                             | codes                       |                             |                           |                             |                           | <i>e</i> 0 0 |       |
|                        | Neural codes <sup>†</sup> [14] $\star MAC$ | $(\mathbf{fA})$          |      |                             | 41.8                      |                             | 35.4                        |                             | 62.0                      | -                           | 48.5                      | <b>60.9</b>  |       |
|                        | ★ R-MAC                                    | $(\mathbf{fV})$          |      |                             |                           |                             |                             |                             |                           |                             | <b>49.6</b>               |              |       |
|                        | Neural codes <sup>†</sup> $[14]$           | $(\mathbf{I}\mathbf{V})$ |      | 10.5                        | 02.1                      |                             | 46.7                        |                             | _                         |                             | -                         | <b>72.9</b>  |       |
|                        | ★ MAC                                      | $(\mathbf{fV})$          |      | 6                           | 9.2                       | _                           |                             |                             | 69.5                      | 51.6                        | 56.3                      |              |       |
|                        | ★ R-MAC                                    | $(\mathbf{fV})$          |      |                             | <b>J</b> .4               | -                           |                             |                             |                           | 1                           | 55.8                      |              |       |
|                        |                                            | Re-ra                    | nkin | -<br>σ (R)                  | and                       | ouerv                       | evna                        | nsion                       | (OE                       |                             |                           |              |       |
| Concurrent work:       | BoW(1M)+QE [6]                             | 100 10.                  | _    | $\frac{8}{82.7}$            | -                         | $\frac{query}{76.7}$        |                             | 80.5                        | · ·                       | 71.0                        | _                         | _            | _     |
| Concurrent work.       | BoW(16M) + QE[50]                          |                          | _    | 84.9                        | _                         | 79.5                        | _                           | 82.4                        |                           | 77.3                        | _                         | _            | _     |
| [Gordo et al. ECCV'16] | HQE(65k) [8]                               |                          |      | 88.0                        | _                         | 84.0                        |                             | 82.8                        |                           | _                           | _                         | _            | _     |
|                        | R-MAC+R+QE [25]                            | ( <b>V</b> )             | 512  | 77.3                        | _                         | 73.2                        | _                           | <b>86.5</b>                 | _                         | 79.8                        | _                         | _            | _     |
|                        | CroW+QE [24]                               |                          |      | 72.2                        | —                         | 67.8                        | —                           | 85.5                        |                           | 79.7                        | _                         | —            | —     |
|                        | $\star$ MAC+R+QE                           | $(\mathbf{fV})$          |      |                             |                           |                             |                             |                             |                           |                             |                           | _            | _     |
|                        | $\star$ R-MAC+R+QE                         | $({\bf fV})$             | 512  | 82.9                        | 84.5                      | 77.9                        | 80.4                        | 85.6                        | 86.4                      | 78.3                        | 79.7                      | _            | —     |

| Method         | Oxf5k | Oxf105k | Par6k | Par106k |  |  |
|----------------|-------|---------|-------|---------|--|--|
| BoW(16M)+R+QE  | 84.9  | 79.5    | 82.4  | 77.3    |  |  |
| CNN(512D)      | 79.7  | 73.9    | 82.4  | 74.6    |  |  |
| CNN(512D)+R+QE | 85.0  | 81.8    | 86.5  | 78.8    |  |  |

Our CNN with re-ranking (R) and query expansion(QE) surpasses its teacher on all datasets!!!

### top 10 (correct | incorrect)





BoW



#### first incorrect at rank 127



query



BoW



top 10 (correct | incorrect)









first incorrect at rank 159







### top 10 (correct | incorrect)



# Conclusions

- We propose a method to generate the necessary "lots of training examples" without any human interaction
- Strong supervision for hard negative, hard positive mining, and supervised whitening
- Data and trained networks available at: <u>cmp.felk.cvut.cz/~radenfil/projects/siamac.html</u>
- For more details about the paper visit **Poster O-1A-01**