

Multiple Measurements and Joint Dimensionality Reduction for Large Scale Image Search with Short Vectors

Filip Radenović¹ Hervé Jégou² Ondřej Chum¹

¹ Centre for Machine Perception, CTU in Prague ² INRIA, Rennes

Short-vector image retrieval with multiple vocabularies

Query

Small memory footprint of the dataset, each image represented by a short vector (128D)

Our approach is based on bag-of-words (BOW) multiple vocabularies (multiple BOW) are used to reduce quantization effect

Bag-of-words (BOW) baseline

Keypoint Detection

Local Appearance

SIFT Description [Lowe – IJCV 2004]

L2 normalized histogram of occurrences – BOW vector

*BOW vectors compared using cosine similarity

graffiti visual words

Sivic & Zisserman – ICCV 2003 Video Google: A Text Retrieval Approach to Object Matching in Videos

PCA dimensionality reduction and whitening

High dimensional sparse BOW image representation

*Search is done using inverted files

*Search is done using (approximate) nearest-neighbors

128 dimensional dense

image representation

Jegou & Chum – ECCV 2012 Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening

PCA dimensionality reduction and whitening

Jegou & Chum analyze effects of different parts of PCA on BOW vectors:

- Centering emphasize negative evidence, higher importance of jointly missing visual words
- PCA rotation decorrelating and allowing to remove least informative dimensions
- Whitening addresses over-counting (burstiness, co-occurence)

Jegou & Chum – ECCV 2012 Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening

Joint dimensionality reduction of multiple vocabularies (mVocab) baseline

Joint dimensionality reduction of multiple vocabularies:

- 1. Multiple vocabularies are built using different k-means initializations
- 2. BOW vectors are concatenated
- 3. Concatenated BOW vectors are jointly PCA-reduced and whitened

Jegou & Chum – ECCV 2012 Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening

BOW vs. mVocab

Increasing dimensionality $-n \times k$ **BOW** baseline mVocab baseline mAP on Holidays mAP on Holidays 46^L number of concatenated vocabularies number of concatenated vocabularies **BOW** baseline mVocab baseline mAP on Oxford5k **Oxford5k** mAP on number of concatenated vocabularies number of concatenated vocabularies

Fixed dimensionality - 128

Multiple vocabularies with different sizes

Concatenating vocabularies with multiple sizes [Jegou & Chum – ECCV 2012], example: 4k+2k+1k+512+256+128

Grauman & Darrell – ICCV 2005 The pyramid match kernel Stwenius & Nister – CVPR 2006 Scalable recognition with a vocabulary tree

Proposed methods

Build independent (less correlated) vocabularies by:

- 1. Using different measurement regions for calculating SIFT descriptors (mMeasReg)
 - Descriptors extracted from different image patches
- 2. Using different power-law normalizations of SIFT descriptors (mRootSIFT)
 - Non-linear transformations of the descriptors (and distances)
- 3. Using different PCA-reduced SIFT descriptors (mPCA-SIFT)
 - Linear transformation of the descriptors (and distances)

Multiple measurement regions (mMeasReg)

Construct vocabularies at multiple relative scales of the measurement regions:

 $r = 3\sqrt{3}$ – relative change in the measured area radius compared to detected area radius

Multiple power-law normalized SIFT descriptors (mRootSIFT)

K-means with different power-law normalized SIFT descriptors result in different hypersurfaces in original SIFT descriptor space:

- SIFT descriptors + Euclidian distance = hyperplanes in SIFT space
- Rooted SIFTs + Euclidian distance =
- hyperplanes in SIFT spacecurved hypersurfaces in SIFT space

Three things everyone should know to improve object retrieval

Multiple power-law normalized SIFT descriptors (mRootSIFT)

 We combine SIFT and SIFT with every component to the power of 0.4 (SIFT^{0.4}), 0.5 (SIFT^{0.5}), 0.6 (SIFT^{0.6}) to create four different vocabularies

Multiple linear projections of SIFT descriptors (mPCA-SIFT)

Construct vocabularies using different PCA projections of SIFTs:

- 1. Reduce SIFTs to 80, 64, 48, 32 dimensions for every new vocabulary while learning eigenvectors on Paris6k (mPCA₁-SIFT)
- 2. Reduce SIFTs to 80 dimensions for every new vocabulary while learning eigenvectors on different datasets: Paris6k, Holidays, UKB, PASCAL VOC'07 (mPCA₂-SIFT)
- 3. Reduce SIFTs to 80, 64, 48, 32 dimensions for every new vocabulary while learning eigenvectors on different datasets: Paris6k, Holidays, UKB, PASCAL VOC'07 (mPCA₃-SIFT)

Multiple linear projections of SIFT descriptors (mPCA-SIFT)

14/16

Comparison with the state-of-the-art

All presented methods have short-vector (128D) image representations:

Method	Vocabulary	Oxford5k	Oxford105k	Holidays
mVocab/BOW [1]	$k=4\times 8k$	41.3/41.4*	$-/33.2^{*}$	56.7/63.0*
mVocab/BOW [1]	$k=2\times(32\mathbf{k}+\ldots+128)$	$-/42.9^{*}$	$-/35.1^{*}$	$60.0/64.5^*$
mVocab/VLAD [1]	$k=4\times 256$			61.4
mVocab/VLAD+adapt+innorm [2]	$k=4\times 256$	44.8	37.4	62.5
$\phi_{\Delta} + \psi_{d} + \text{RN}$ [3]	$k{=}16$	43.3	35.3	61.7
mMeasReg/mVocab/BOW	$k=5\times 2k$	46.9	38.9	66.9
mMeasReg/mVocab/BOW	$k=4\times(4\mathbf{k}+\ldots+128)$	47.7	39.2	67.3
mRootSIFT/mVocab/BOW	$k=4\times 2k$	47.7	39.8	64.3
mRootSIFT/mVocab/BOW	$k=4\times(2\mathbf{k}+\ldots+128)$	48.8	41.4	65.6
mPCA ₃ -SIFT/mVocab/BOW	$k=5\times 2k$	45.8	38.1	63.2
mPCA ₁ -SIFT/mVocab/BOW	$k=5\times(4\mathbf{k}+\ldots+128)$	45.5	37.8	64.6

[1] Jegou & Chum, Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening, ECCV 2012

[2] Arandjelovic & Zisserman, All about VLAD, CVPR 2013

[3] Jegou & Zisserman, Triangulation embedding and democratic aggregation for image search, CVPR 2014

Conclusions

- + Simple implementation
- + No speed overhead
- + Small memory requirements (128D image representation)
- + State-of-the-art exceeded by a large margin

- Optimal combination of vocabularies still an open problem