
Neural Basis Models for Interpretability

Filip Radenovic
Meta AI

Abhimanyu Dubey
Meta AI

Dhruv Mahajan
Meta AI

Abstract

Due to the widespread use of complex machine learning models in real-world
applications, it is becoming critical to explain model predictions. However, these
models are typically black-box deep neural networks, explained post-hoc via meth-
ods with known faithfulness limitations. Generalized Additive Models (GAMs) are
an inherently interpretable class of models that address this limitation by learning a
non-linear shape function for each feature separately, followed by a linear model
on top. However, these models are typically difficult to train, require numerous
parameters, and are difficult to scale. We propose an entirely new subfamily of
GAMs that utilizes basis decomposition of shape functions. A small number of ba-
sis functions are shared among all features, and are learned jointly for a given task,
thus making our model scale much better to large-scale data with high-dimensional
features, especially when features are sparse. We propose an architecture denoted
as the Neural Basis Model (NBM) which uses a single neural network to learn
these bases. On a variety of tabular and image datasets, we demonstrate that for
interpretable machine learning, NBMs are the state-of-the-art in accuracy, model
size, and, throughput and can easily model all higher-order feature interactions.
Source code is available at github.com/facebookresearch/nbm-spam.

1 Introduction

Real world machine learning models [14, 61] are mostly used as a black-box, i.e., it is very difficult
to analyze and understand why a specific prediction was made. In order to explain such black-box
models, an instance-specific local interpretable model is often learned [38, 50]. However, these
approaches tend to be unstable and unfaithful [1, 52], i.e., they often misrepresent the model’s
behavior. On the other hand, a family of models known as generalized additive models (GAMs) [24]
have been used for decades as an inherently interpretable alternative to black-box models.

GAMs learn a shape function for each feature independently, and outputs of such functions are added
(with a bias term) to obtain the final model prediction. All models from this family share an important
trait: the impact of any specific feature on the prediction does not rely on the other features, and can
be understood by visualizing its corresponding shape function. Original GAMs [24] were fitted using
splines, which have since been improved in explainable boosting machines (EBMs) [36] by fitting
boosted decision trees, or very recently in neural additive models (NAMs) [2] by fitting deep neural
networks (DNNs). A drawback for all the aforementioned approaches is that for each shape function,
they require either millions of decision trees [36], or a DNN with tens of thousands of parameters [2],
making them prohibitively expensive for learning datasets with a large number of features.

In this work, we propose a novel subfamily of GAMs, which, unlike previous approaches, learn
to decompose each feature’s shape function into a small set of basis functions shared across all
features. The shape functions are fitted as the feature-specific linear combination of these shared
bases, see Figure 1. At an abstract level, our approach is motivated by signal decomposition using
traditional basis functions like the Fourier basis [9] or Legendre polynomials [45], where a weighted

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/facebookresearch/nbm-spam

Figure 1: Neural Basis Model (NBM) architecture for a binary classification task.

combination of a few basis functions suffice to reconstruct complex signal shapes. However, in
contrast to these approaches, our basis decomposition is not fixed a priori. In fact, it is learnt
specifically for the prediction task. Consequently, we maintain the most important feature of GAMs,
i.e., their interpretability, as the contribution of single feature does not depend on the other features.
At the same time, we gain scalability, as the number of basis functions needed in practice is much
smaller than the number of input features. Moreover, we show that the usage of basis functions can
increase computational efficiency by several orders of magnitude when the input features are sparse.
Additionally, we propose an approach to learning the basis functions using a single DNN. We call this
solution the Neural Basis Model (NBM). Using neural networks allows for even higher scalability,
as training and inference are performed on GPUs or other specialized hardware, and can be easily
implemented in any deep learning framework using standard, already developed, building blocks.

Our contributions are as follows: (i) We propose a novel subfamily of GAMs whose shape functions
are composed of shared basis functions, and propose an approach to learn basis functions via DNNs,
denoted as Neural Basis Model (NBM). This architecture is suitable for mini-batch gradient descent
training on GPUs and easy to plug-in into any deep learning framework. (ii) We demonstrate that
NBMs can be easily extended to incorporate pairwise functions, similar to GA2Ms [37], by learning
another set of bases to model the higher order interactions. This approach effectively only linearly
increases the parameters, while other models such as EB2Ms [36, 37] and NA2Ms [2] suffer from
quadratic growth of parameters, and often require heuristics and repeated training to select the most
important interactions before learning [37]. (iii) Through extensive evaluation of regression, binary
classification, and multi-class classification, with both tabular and computer vision datasets, we show
that NBMs and NB2Ms outperform state-of-the-art GAMs and GA2Ms, while scaling significantly
better, i.e., fitting much fewer parameters and having higher throughput. For datasets with more than
ten features, using NBMs result in around 5×–50× reduction in parameters over NAMs [2], and
4×–7× better throughput. (iv) We propose an efficient extension of NBMs to sparse datasets with
more than a hundred thousand features, where other GAMs do not scale at all.

2 Related work

Shape functions in GAMs [24, 64] have many different representations in the literature, including:
splines [24], trees or random forests [36], deep neural networks [2], neural oblivious decision
trees [12]. Popular methods of fitting GAMs are: backfitting [24], gradient boosting [36], or mini-
batch gradient descent [2, 12]. Our work falls under the GAM umbrella, however, it differs from
these approaches by not learning shape functions independently, but rather, learning a set of shared
basis functions that are used to compose each shape function. The bases themselves can be complex
non-linear functions that operate on one feature at a time, e.g., decision trees or splines, however, to
keep the scope of the work concise and to ensure straightforward scalability, we represent them with
deep neural networks and use mini-batch stochastic gradient descent to learn the bases. This makes
our work most closely related to neural additive models (NAMs) [2], however, crucially, our method
learns far fewer parameters by sharing bases compared to NAMs.

2

Methods have been proposed to model pairwise interactions [12, 37, 58], and they are commonly de-
noted as GA2Ms. However, they usually require sophisticated feature selection using: heuristics [37],
back-propagation [12], or, two-stage iterative training [58]. We note that one of the main goals of
our work is to analyze the scalability of the newly proposed NBM architecture in extreme scenarios,
hence, we do not apply feature selection algorithms. That being said, before-mentioned algorithms
are complementary and can be applied to NB2Ms as well.

Finally, GAMs are a popular choice in high-risk applications for healthcare [11, 56], finance [6],
forensics [55], etc. Another line of work applicable to these domains are interpretable surrogate
models such as LIME [50], SHAP [38], tree-based surrogates [5, 57], that give a post-hoc explanation
of a high-complexity model. However, there are almost no theoretical guarantees that the simple
surrogate model is highly representative of the more complex model [1]. This issue is completely
resolved when using inherently transparent models such as NBMs. We hope that our approach sparks
wider usage of GAMs in mission-critical applications with large-scale data, where the ability to
interpret, understand, and correct the model is of utmost importance.

3 Method

3.1 Background

Generalized Additive Model (GAM) [24]. Given a D-dimensional interpretable input x={xi}Di=1,
x ∈ RD, a target label y, a link function g (e.g., logistic function), a univariate shape function fi,
corresponding to the input feature xi, a bivariate shape function fij , corresponding to the feature
interaction, and a bias term f0, the prediction function in GAM and GA2M is expressed as

GAM : g(x) = f0 +

D∑
i=1

fi(xi); GA2M : g(x) = f0 +

D∑
i=1

fi(xi) +

D∑
i=1

D∑
j>i

fij(xi, xj). (1)

Interpreting GAMs is straightforward as the impact of a feature on the prediction does not rely
on the other features, and can be understood by visualizing its corresponding shape function, e.g.,
plotting xi on the x-axis and fi(xi) on the y-axis. A certain level of interpretability is sacrificed for
accuracy when modeling interactions, as fij shape functions are harder to visualize. Shape function
visualization through heatmaps [12, 37] is commonly used towards that purpose. Note that, the graphs
visualizations of GAMs are an exact description of how GAMs compute a prediction.

3.2 Our model architecture

We observe that, typically, input features of high-dimensional data are correlated with each other. As
a result, it should be possible to decompose each shape function fi into a small set of basis functions
shared among all the features. This is the core idea behind our approach.

Neural Basis Model (NBM). We propose to represent shape functions fi as

fi(xi) =

B∑
k=1

hk(xi)aik; (2)

where {h1, h2, ..., hB} represents a set of B shared basis functions that are independent of feature
indices, and coefficients aik are the projection of each feature to the shared bases. We addition-
ally propose to learn basis functions using a DNN, i.e., a single one-input B-output multi-layer
perceptron (MLP) for all {hk; k = 1, . . . , B}. The resulting architecture is shown in Figure 1.

Multi-class / multi-task architecture. Let l correspond to the target class yl in the multi-class
setting. Similar to Equation 1, the prediction function gl for class yl in GAMs can be written as:

gl(x) = f0l +

D∑
i=1

fi(xi)wil, (3)

where feature shape functions fi(xi) are shared among the classes and are linearly combined using
class specific weights wil. Combining Equations 2 and 3, multi-class NBM can be represented as:

Multi-class NBM : gl(x) = f0l +

D∑
i=1

B∑
k=1

hk(xi)aikwil. (4)

3

Extension to NB2M. Similar to NBM, we represent GA2M shape functions fij in Equation 1 as:

fij(xi, xj) =

B∑
k=1

uk(xi, xj)bijk; (5)

where {u1, u2, ..., uB} represents a set of B shared bi-variate basis functions that are independent of
feature indices and coefficients bijk are the projection of pair-wise features to the shared bases. We
learn an additional two-input B-output MLP for all {uk; k = 1, . . . , B} to learn the bases. Extension
to multi-class setting can be done in the same way as for NBMs.

Sparse architecture. Typically, datasets with high-dimensional features are sparse in nature. For
example, in the Newsgroups dataset [32], news articles are represented by tf-idf features, and, for
a given instance, most of the features are absent due to the vocabulary being of the order of 100K
words. Since NBM uses a single DNN to learn all the bases, we can simply append the single value
representing the absent feature to the batch, to compute the corresponding basis function values. The
subsequent linear projection to feature indices via aik is a computationally inexpensive operation.

In contrast, typical GAMs (e.g., Neural Additive Model (NAM) [42]) need to pass the absent value
through every shape function fi which makes it compute-intensive as well as difficult to implement.

Training and regularization. We use mean squared error (MSE) for regression, and cross-entropy
loss for classification. To avoid overfitting, we use the following regularization techniques: (i)
L2-normalization (weight decay) [31] of parameters; (ii) batch-norm [28] and dropout [54] on hidden
layers of the basis functions network; (iii) an L2-normalization penalty on the outputs fi to incentivize
fewer strong feature contributions, as done in [2]; (iv) basis dropout to randomly drop individual basis
functions in order to decorrelate them. Similar techniques have been used for other GAMs [2, 12].

Selecting the number of bases. One can use the theory of Reproducing Hilbert Kernel Spaces
(RKHS, [7]) to devise a heuristic for selecting the number of bases B. Specifically, we demonstrate
that any NBM model lies on a subspace within the space spanned by a complete GAM if the
GAM shape functions reside within a ball in an RKHS. Assuming a regularity property in the data
distribution, one can then demonstrate that B = O(logD) bases are sufficient to obtain competitive
performance. We present this formally in Appendix Sec. A.5. This provides the alternate interpretation
of NBM as learning a “principal components” decomposition in the L2−space of functions, as we
learn a set of (preferably orthogonal) basis functions to approximate the decision boundary.

3.3 Discussion

In this section, we contrast NBMs with closely related GAMs: Neural Additive Models (NAMs) [2].

Neural Additive Model (NAM) [2]. NAMs learn a linear combination of networks that each attend
to a single input feature: each fi in (1) is parametrized by a deep neural network, i.e., a one-input
one-output multi-layer perceptron (MLP). These MLPs are trained jointly using backpropagation and
can learn arbitrarily complex shape functions.

1 10 100 1k 10k 100k
0

10

20

30

40

50

60

70

D

|N
A

M
|/
|N

B
M
|

Figure 2: NAM vs. NBM: #parameters.

Number of parameters. We compare number
of weight parameters needed to learn NAM vs.
NBM for the binary-classification task. See Ap-
pendix Section A.3 for multi-class analysis. Let
us denote with M the number of parameters in
MLP for each feature in NAM, and with N the
number of parameters in MLP for bases in NBM.
In most experiments the optimal NAM has 3 hid-
den layers with 64, 64 and 32 units (M = 6401),
and, NBM has 3 hidden layers with 256, 128,
128 units (N = 62820) and B = 100 basis func-
tions. Then the ratio of number of parameters in
NAM vs. NBM is given by,

|NAM|
|NBM| =

D ·M +D

N +D ·B +D
=

6402
62820
D + 101

. (6)

4

Figure 2 shows this ratio for different values of feature dimensionality D. For D = 10, NBMs
and NAMs have roughly equal number of parameters. For most textual and vision datasets, feature
dimensionality is significantly higher, thus leading to 10×–50× reduction in parameters. We also
observe that as a result, for many datasets, specialized regularization discussed in the previous section
gives incremental gains for NBMs, while they are very crucial for NAMs to give good performance.
Additional analysis on number of parameters is given in Section 4.4 and Table 2.

Throughput. One of the main challenges in approach like NAMs is the low throughput rate, that is
the number of data instances processed per second, which directly affects the training speed. Since
NAMs use separate MLP per dimension, it is much more challenging to implement efficiently. NBMs
on the other hand are much more efficient since feature specific linear layer on the top of bases is very
fast. For example, for datasets with around hundred features, the original NAM implementation [2] is
around 20× slower in training compared to NBMs. We optimized the speed of NAMs using group
convolutions (see Appendix Section A.3), but even this optimized version is around 5× slower.

Stability. The interpretability of models and their explanations is tightly coupled to their stability.
For example, post-hoc explanations of black-box models are known to be unstable, and produce
different explanations for small input changes [53]. GAMs are exactly explained by visualizing shape
functions that represent the model, however, a desirable property is to have similar shape functions
when repeatedly training the model on the same data while varying random initialization. Because
of the over-parameterization in NAMs, we observe that shape functions of different runs are often
unstable (i.e. they often diverge), especially for feature regions where the data density is low. On
the other hand, NBMs train a single set of shared bases for the entire dataset, which makes shape
functions significantly more stable, see Section 4.6 and Figure 3.

NA2M vs. NB2M. NAMs can trivially be extended to NA2Ms by learning additional two-input
one-output MLPs for each pairwise feature interaction fij . Since the numbers of parameters grow
quadratically, this setting further exaggerates the parameters and throughput discrepancies. In fact, as
we show in Section 4.4, for high dimensional datasets the NA2M approach does not scale at all.

4 Experiments

4.1 Datasets

Tabular datasets. We report performance on CA Housing [10, 46], FICO [22], CoverType [8,
16, 20], and Newsgroups [32, 43] tabular datasets. We perform one-hot encoding for categorical
features, and min-max scaling of features to [0, 1] range. Data is split to have 70/10/20 ratio for
training, validation, and, testing, respectively; except for Newsgroups where test split is fixed, so we
only split the train part to 85/15 ratio for train and validation.

We also report performance on MIMIC-II [41, 51], Credit [17, 19], Click [15], Epsilon [21],
Higgs [3, 26], Microsoft [40, 49], Yahoo [60], and Year [66] tabular datasets. For these datasets,
we follow [12, 47] to use the same training, validation, and, testing splits, and to perform the same
feature normalization: target encoding for categorical features, quantile transformation with 2000
bins for all features to Gaussian distribution.

Additional details for all tabular datasets are given in Table 1 and Appendix Section A.1.

Image datasets (classification). We experiment with two bird classification datasets: CUB [18, 62]
and iNaturalist Birds [27, 59]. CUB images are annotated with keypoint locations of 15 bird parts,
and each location is associated with one or more part-attribute labels. iNaturalist Birds contains
significantly more bird classes and more challenging scenes compared to CUB, but lacks keypoint
annotations. We perform the concept-bottleneck-style [29] interpretable pre-processing: (i) Images
are randomly cropped and resized to 448×448 size, and passed through a ResNet50 model [25] until
the last pooling layer to extract 2048-D features on the 14×14 spatial grid. (ii) Part-attribute linear
classifiers are trained on the extracted features using part locations and part-attribute labels from CUB
training split. (iii) Max-pooling of part-attribute scores over spatial locations is performed to extract
278 interpretable features (e.g., orange legs, striped wings, needle-shaped beak) for each image in
both CUB and iNaturalist, using the part-attribute classifiers trained on CUB only. Splits are preset
and results are reported on the validation split, which is a common practice in the computer vision
community. Additional details are given in Table 1 and Appendix Section A.1.

5

Table 1: Datasets overview.
Dataset Task #Train #Val #Test Sparse #Feat #Class

Tabular dataset
CA Housing Regression 14,447 2,065 4,128 No 8 –
FICO Binary 7,321 1,046 2,092 No 39 2
CoverType Multi-class 406,707 58,102 116,203 No 54 7
Newsgroups Multi-class 9,899 1,415 7,532 99.9% 146,016 20

MIMIC-II Binary 17,155 2,451 4,902 No 17 2
Credit Binary 199,364 28,481 56,962 No 30 2
Click Binary 800,000 100,000 100,000 No 11 2
Epsilon Binary 320,000 80,000 100,000 No 2,000 2
Higgs Binary 8,400,000 2,100,000 500,000 No 28 2
Microsoft Regression 580,539 142,873 241,521 No 136 –
Yahoo Regression 473,134 71,083 165,660 No 699 –
Year Regression 370,972 92,743 51,630 No 90 –

Image dataset
CUB Classification 5,994 5,794 – No 278 200
iNaturalist Birds Classification 414,847 14,860 – No 278 1,486
Common Objects Detection 2,645,488 58,525 – 97.0% 2,618 115

Image dataset (object detection). For this task we use a proprietary object detection dataset,
denoted as Common Objects, that contains 114 common objects, (plus a background class) with
bounding box locations, 200 parts and 54 attributes. Each box for each image is pre-processed using
compositions of parts and attributes to extract 2,618 interpretable features and 100k pairwise feature
interactions. For the purpose of evaluating models in this paper, one data instance in this dataset is
equivalent to one bounding box. As with previous computer vision datasets, results are reported on
the validation split. Additional details are given in Table 1 and Appendix Section A.1.

4.2 Baselines

We implement the following baselines in PyTorch [48], and train using mini-batch gradient descent:

Linear. Linear / logistic regression are interpretable models that make a prediction decision based
on the value of a linear combination of the features.

NAM [2]. We experiment with two proposed NAM architectures [2]: (i) MLPs containing 3 hidden
layers with 64, 64 and 32 units and ReLU [23] activation, and (ii) single hidden layer MLPs with
1,024 ExU units and ReLU-1 activation. We reimplement the original NAM implementation [42]
(details in Appendix Section A.3) achieving around ×2–×10 speedup at training, depending on
the dataset. Finally, we extend the implementation to NA2Ms, as well. We released our NAM
implementation together with the rest of our code at github.com/facebookresearch/nbm-spam.

MLP. Multi-layer perceptron (MLP) is a non-interpretable black-box model capturing high-order
interaction between the features: g(x)=f(x1, x2, . . . , xD). For most datasets, MLP sets the upper
bound on the performance, and gives an idea of the trade-off between accuracy and interpretability.
We experiment with the following architectures: (i) 5 hidden layers with 128, 128, 64, 64, 64 units;
(ii) 3 hidden layers with 1024, 512, 512 units; (iii) 2 hidden layers with 2048, 1024 units. We have
observed that increasing the depth by adding more layers for any of the three architectures has no
additional accuracy gain. For all datasets, we report the best performing architecture across the three.
For the following baselines, we use the available implementations:

EBM [36, 37]. Explainable Boosting Machines (EBMs) are another state-of-the-art GAM which
use gradient boosting of millions of shallow trees to learn a shape function for each input feature.
These models support automatic pairwise interactions through their EB2M implementation, but only
for regression and binary classification tasks. We use the interpretml library [44].

XGBoost [13]. EXtreme Gradient Boosted trees (XGBoost) are another non-interpretable black-box
model that learn high-order feature interactions. We use the xgboost library [13].

6

https://github.com/facebookresearch/nbm-spam

Table 2: Number of parameters (#par.) and throughput as inputs per second (x/sec). Here NAM and
NA2M refers to our optimized implementation; †refers to sparse NBM optimization.

Model CA Housing FICO CoverType Newsgroups iNat. Birds

#par. x/sec #par. x/sec #par. x/sec #par. x/sec #par. x/sec

NAM 54K 0.5M 262K 123K 363K 80K 984M 23 2.3M 15K
NBM 65K 3.4M×6.8 68K 821K×6.7 70K 530K×6.6 18M †9K×391 0.5M 74K×4.9

NA2M 243K 119K 5.3M 6K 10M 3K – – 320M 99
NB2M 161K 641K×5.4 0.3M 30K×5.0 0.5M 15K×5.0 – – 66M 374×3.8

4.3 Implementation details

NBM. We use the following architecture for NBMs and NB2Ms: MLP containing 3 hidden layers
with 256, 128, and 128 units, ReLU [23], B = 100 basis outputs for NBMs and B = 200 for NB2Ms.
Source code is available at github.com/facebookresearch/nbm-spam.

Training details. Linear, NAM, NBM, and MLP models are trained using the Adam with decoupled
weight decay (AdamW) optimizer [35], on 8×V100 GPU machines with 32 GB memory, and a
batch size of at most 1024 per GPU (divided by 2 every time a batch cannot fit in the memory). We
train for 1,000, 500, 100, or, 50 epochs, depending on the size and feature dimensionality of the
dataset. The learning rate is decayed with cosine annealing [34] from the starting value until zero. For
NBMs on all datasets, we tune the starting learning rate in the continuous interval [1e−5, 1.0), weight
decay in the interval [1e−10, 1.0), output penalty coefficient in the interval [1e−7, 100), dropout and
basis dropout coefficients in the discrete set {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We
find optimal hyper-parameters using validation set and random search. Similar hyper-parameter
search is performed for Linear, NAM, and MLP baselines. Finally, for EBMs and XGBoost, CPU
machines are used, with hyper-parameter search using the guidelines in the original works. See
Appendix Section A.2 for more training and hyper-parameter search details.

Evaluation details. Performance metrics: (i) for regression we report mean-squared error (MSE) or
root MSE (RMSE); (ii) for binary classification we report area under the ROC curve (AUROC) or error
rate (Error); (iii) for multi-class classification in tabular and image domains we report accuracy@1
(acc@1); and, (iv) for object detection in image domain we report mean average precision (mAP)
averaged over IoU thresholds from 0.5 to 0.9 as per MS-COCO [33] definitions. We report average
performance and standard deviation over 10 runs with different random seeds.

4.4 Comparison with baselines

In this section we compare NBM, as well as the pairwise interactions NB2M counterpart, with popular
and widely used GAMs and non-interpretable black-box models.

First, we perform extensive comparison on the number of parameters and throughput against the most
similar architecture, i.e. Neural Additive Model (NAM) [2]. Both NAMs and NBMs utilize deep
networks and are able to run on GPUs, which helps to scale the models on large datasets. Results
on representative datasets are presented in Table 2. The throughput is measured as the number of
input instances that we can process per second (x / sec) on one 32 GB V100 GPU, in inference
mode. For each model, we take the largest batch size (up to 8,192) that fits on the GPU and calculate
the average time over 100 runs to process that batch. With that, we calculate the number of input
instances processed per second. Throughput can vary depending on the implementation, library used,
etc. Hence, in order to be as fair as possible, we compare both models with our own optimized
implementation in the same deep learning library, i.e., PyTorch [48]. The only dataset where NAM
narrowly beats NBM in the number of parameters is CA Housing, which has the smallest number of
input features D = 8. On other datasets, NBM has around 5×–50× fewer parameters than NAM,
while having 4×–7× smaller runtime. Finally, only the sparse version of NBM model can efficiently
run on Newsgroups and Common Objects (with pairwise interactions) datasets, where standard
NAMs (and other GAMs) have throughput too low for any practical application. Note that these
comparisons are with our optimized implementation of NAM.

7

https://github.com/facebookresearch/nbm-spam

Table 3: Performance comparison with baselines. ↓: lower is better; ↑: higher is better.

Model
CA FICO CoverType News. CUB iNat. Common

Housing Birds Objects

RMSE ↓ AUROC ↑ acc@1 ↑ acc@1 ↑ acc@1 ↑ acc@1 ↑ mAP ↑

Linear 0.7354
±0.0004

0.7909
±0.0001

0.7254
±0.0000

0.8238
±0.0005

0.7451
±0.0003

0.3932
±0.0004

0.1917
±0.0001

EBM 0.5586
±0.0002

0.7985
±0.0001

0.7392
±0.0004 — — — —

NAM 0.5721
±0.0054

0.7993
±0.0004

0.7359
±0.0003 — 0.7632

±0.0010
0.4194
±0.0007

0.2056
±0.0005

NBM 0.5638
±0.0013

0.8048
±0.0005

0.7369
±0.0002

0.8446
±0.0012

0.7683
±0.0007

0.4227
±0.0007

0.2168
±0.0006

EB2M 0.4919
±0.0004

0.7998
±0.0005 — — — — —

NA2M 0.4921
±0.0078

0.7992
±0.0003

0.8872
±0.0006 — 0.7713

±0.0011
0.4591
±0.0010 —

NB2M 0.4779
±0.0020

0.8029
±0.0003

0.8908
±0.0008 — 0.7770

±0.0006
0.4684
±0.0009

0.2378
±0.0006

XGBoost 0.4428
±0.0006

0.7925
±0.0008

0.8860
±0.0003

0.7677
±0.0009

0.7186
±0.0008 — —

MLP 0.5014
±0.0061

0.7936
±0.0013

0.9694
±0.0002

0.8494
±0.0021

0.7684
±0.0007

0.4584
±0.0008

0.2376
±0.0007

Next, we compare performance with GAM baselines, and non-interpretable black-box models in
Table 3. We notice that NBMs achieve the best performance among all GAMs, even outperforming
full complexity MLPs on several datasets. The difference in performance is more pronounced on
larger datasets, such as iNaturalist and Common Objects, where NBMs generalize better. EBMs have
a big downside as they do not support pairwise interactions on multi-class tasks, and do not scale at
all to very large datasets. Finally, on datasets with large number of features, i.e. Newsgroups and
Common Objects (with pairwise interactions), NBMs are the only GAMs that scale, as we did not
manage to complete a successful training with NAMs or EBMs.

We finally observe that pairwise interactions are enough to match or beat black-box models on 6 out of
7 datasets. The only exception is CoverType, where MLP has 0.9694 acc@1 vs. NB2M with 0.8908.
However, we scale NBMs further and train NB3M (i.e., including triplet interactions) that gets 0.9634
acc@1. Even though this is an interesting result that helps us understand the data behavior, we argue
that triplet feature interactions are very hard to visualize and hence not interpretable.

4.5 Comparison with state of the art

We finally compare NBM, as well as the pairwise interactions NB2M counterpart, with neural-based
state-of-the-art GAMs. Namely, we compare with Neural Additive Model (NAM) [2] and Neural
Oblivious Decision Trees GAM (NODE-GAM) [12], and their pairwise interactions versions NA2M
and NODE-GA2M. Results are presented in Table 4.

We compute NAM and NBM results using our codebase, while NODE-GAM results are reproduced
from [12]. For a fair comparison on these datasets, we use training, validation, and, testing splits
from NODE-GAM [12], and perform the same feature normalization, see Section 4.1 for details.
Without any additional model selection (architecture tuning, stochastic weight averaging, etc.) NBMs
outperform NODE-GAMs on 7 out of 8 presented datasets (albeit marginally), and outperform NAM
on all datasets. Note that, the idea of NBM is perpendicular to that of NODE-GAM and it is possible
that bigger gains can be achieved by combining them, especially for Epsilon and Yahoo datasets,
where NB2Ms do not scale due to a high dimensionality and non-sparse nature of features.

8

Table 4: Performance comparison with state-of-the-art GAMs. NODE-GAM results are reproduced
from [12]. ↓: lower is better; ↑: higher is better. State-of-the-art performance shown in bold.

Model MIMIC-II Credit Click Epsilon Higgs Microsoft Yahoo Year

AUROC ↑ AUROC ↑ Error ↓ Error ↓ Error ↓ MSE ↓ MSE ↓ MSE ↓

NAM 0.8539
±0.0004

0.9766
±0.0027

0.3317
±0.0005

0.1079
±0.0002

0.2972
±0.0001

0.5824
±0.0002

0.6093
±0.0003

85.25
±0.01

NODE
GAM

0.8320
±0.0110

0.9810
±0.0110

0.3342
±0.0001

0.1040
±0.0003

0.2970
±0.0001

0.5821
±0.0004

0.6101
±0.0006

85.09
±0.01

NBM 0.8549
±0.0004

0.9829
±0.0014

0.3312
±0.0002

0.1038
±0.0002

0.2969
±0.0001

0.5817
±0.0001

0.6084
±0.0001

85.10
±0.01

NA2M 0.8639
±0.0011

0.9824
±0.0032

0.3290
±0.0005 — 0.2555

±0.0003
0.5622
±0.0003 — 79.80

±0.05

NODE
GA2M

0.8460
±0.0110

0.9860
±0.0100

0.3307
±0.0001

0.1050
±0.0002

0.2566
±0.0003

0.5618
±0.0003

0.5807
±0.0004

79.57
±0.12

NB2M 0.8690
±0.0010

0.9856
±0.0017

0.3286
±0.0002 — 0.2545

±0.0002
0.5618
±0.0002 — 79.01

±0.03

5 10 15 20 25 30
Average Bedrooms

−15

−10

−5

0

5

10

15

N
A

M
:

H
ou

se
P

ri
ce

C
on

tr
ib

u
ti

on

200 400 600 800 10001200
Average Occupancy

−15

−10

−5

0

5

10

15

20 40 60 80 100 120 140
Average Rooms

−15

−10

−5

0

5

10

15

10 20 30 40 50
Median House Age

−15

−10

−5

0

5

10

15

34 36 38 40
Latitude

−15

−10

−5

0

5

10

15

−124−122−120−118−116
Longitude

−15

−10

−5

0

5

10

15

2 4 6 8 10 12 14
Median Income

−15

−10

−5

0

5

10

15

10000 20000 30000
Block Population

−15

−10

−5

0

5

10

15

5 10 15 20 25 30
Average Bedrooms

−15

−10

−5

0

5

10

15

N
B

M
:

H
ou

se
P

ri
ce

C
on

tr
ib

u
ti

on

200 400 600 800 10001200
Average Occupancy

−15

−10

−5

0

5

10

15

20 40 60 80 100 120 140
Average Rooms

−15

−10

−5

0

5

10

15

10 20 30 40 50
Median House Age

−15

−10

−5

0

5

10

15

34 36 38 40
Latitude

−15

−10

−5

0

5

10

15

−124−122−120−118−116
Longitude

−15

−10

−5

0

5

10

15

2 4 6 8 10 12 14
Median Income

−15

−10

−5

0

5

10

15

10000 20000 30000
Block Population

−15

−10

−5

0

5

10

15

Figure 3: NAM (upper row) and NBM (bottom row) shape functions fi for the CA Housing dataset.

4.6 Stability and interpretability

The interpretability of GAMs comes from the fact that the learned shape functions can be easily
visualized. In the same manner as the other GAM approaches, each feature’s importance in an NBM
can be represented by a unique shape function that exactly describes how the NBM computes a
prediction. We demonstrate this on the CA Housing dataset because it has a small number of input
features (D = 8) and the full model can conveniently be visualized in a single row, see Figure 3.

Towards this purpose, we train an ensemble of 100 models by running different random seeds with
optimal hyper-parameters, in order to analyze when the models learn the same shape and when they
diverge. Following Agarwal et al. [2], we set the average score for each shape function to be zero by
subtracting the respective mean feature score. Next, we plot each shape function as fi(xi) vs. xi for
each model in the ensemble using a semi-transparent line, and an average ensemble shape function
using a thick line. Finally, the x-axis is divided by bars depicting the normalized data density, i.e.,
darker areas contain more data points. Figure 3 depicts an ensemble of NAMs [2] (upper row) and
NBMs (bottom row). Although the shape functions are correlated for most features, we observe that
NBMs diverge much less in the cases where there are only few data points (light / white areas in
the graphs). This is due to the fact that the basis network in NBM is trained jointly with only linear
composing weights being trained for each feature separately. In contrast, each feature in NAM has its
own network, which becomes unstable and diverges in cases of few training data points.

Finally, to quantify stability, we compute the standard deviation for each visualized shape function
over 100 models, and report the mean standard deviation over all features. For NAMs, this mean
standard deviation is 0.9921, while for NBMs it is 0.1987.

9

5 10 25 50 100 200 500 1000
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

B

ac
c@

1

NBM, CoverType NB2M, CoverType
NBM, CUB NB2M, CUB
NBM, Newsgroups

Figure 4: Ablation on the number of bases B.

Table 5: Ablation on the number of subnets S.

Model S
CoverType

#param x/sec acc@1

NAM 1 363K 80K 0.7359
NBM 1 70K 530K 0.7369

NAM 5 1.8M 16K 0.7417
NBM 5 350K 88K 0.7435

NB2M 1 463K 15K 0.8908

4.7 Ablation study

Number of basis functions. We evaluate the robustness of NBMs w.r.t. the choice of the number
of basis functions B. Results are presented in Figure 4 for Newsgroups, CoverType, and, CUB. We
observe that NBMs are not overly sensitive to the choice of B. Rather than tuning this hyperparameter,
we recommend setting B = 100 for NBMs and B = 200 for NB2Ms as it performs well across a
large variety of datasets we experimented with. Although, e.g., for NB2Ms on CoverType, using
a larger number of basis functions leads to some performance gains, it comes with a throughput
trade-off, as computing the linear combination of bases starts becoming the bottleneck. Thus, we
suggest using the recommended values as a great trade-off between accuracy and throughput.

Multiple subnets. Agarwal et al. [2] propose to extend NAMs to multi-task / multi-class setups
by associating each feature with multiple subnets. This method is directly applicable on NBMs as
well, by using S different networks to learn S sets of basis functions. We compare few options on the
multi-class CoverType predictions with the number of subnets S=1 and S=5 in Table 5. Both NAMs
and NBMs have a similarly small relative accuracy improvement when using 5 subnets over the 1
subnet, however that comes at a 5× increase in the number of parameters and 5× lower throughput.
With the accuracy-complexity trade-off in mind, we did not see much benefit of using S = 5 on
our datasets, so we keep S = 1 across all other experiments. Interestingly, NB2M with S=1 has a
comparable throughput to NAM with S=5, while achieving an impressive accuracy gain, see Table 5.

5 Conclusion and future work

This work describes novel Neural Basis Models (NBMs), which belong to a new subfamily of
Generalized Additive Models (GAMs), and utilize deep learning techniques to scale to large datasets
and high-dimensional features. Our approach addresses several scalability and performance issues
associated with GAMs, while still preserving their interpretability compared to black-box deep neural
networks (DNNs). We show that our NBMs and NB2Ms achieve state-of-the-art performance on
a large variety of datasets and tasks, while being much smaller and faster than other neural-based
GAMs. As a result, they can be used as a drop-in replacements for the black-box DNNs.

We do recognize that our approach, though highly scalable, has limitations w.r.t. number of features.
Beyond 10,000 dense (or 1 million sparse) features, we would need to apply some form of feature
selection [12, 37, 58] to scale further. Scalability issue is even more pronounced when modeling
pairwise interactions in NB2M. However, NBMs can still handle an order of magnitude more than
what can be handled by NAM or other GAM approaches that do not perform feature selection.

There are many future directions for this line of work. First, for the computer vision domain, we
assume an intermediate, interpretable concept layer [29] on which NBMs and in general GAMs can be
applied. It would be interesting to explore visual interpretability by either directly going to the pixel
space with NBMs or learning visual features that can do recognition with lower order interactions in
NBM framework (for example, NB2Ms). Finally, the idea of using shared basis is generic. Although,
we used neural networks to learn these basis, we can enhance the model interpretability further for
higher order interactions, by using more interpretable learning functions such as polynomials.

10

References
[1] A. Adadi and M. Berrada. Peeking inside the black-box: a survey on explainable artificial intelligence

(XAI). IEEE access, 2018.

[2] R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caruana, and G. E. Hinton. Neural additive
models: Interpretable machine learning with neural nets. In NeurIPS, 2021.

[3] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with deep
learning. Nature communications, 2014.

[4] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. JMLR, 2002.

[5] O. Bastani, C. Kim, and H. Bastani. Interpretability via model extraction. In FAT/ML, 2017.

[6] D. Berg. Bankruptcy prediction by generalized additive models. ASMBI, 2007.

[7] A. Berlinet and C. Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and statistics.
Springer Science & Business Media, 2011.

[8] J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Computers and Electronics in
Agriculture, 1999.

[9] R. N. Bracewell. The Fourier transform and its applications. McGraw Hill, 1986.

[10] CA Housing. California Housing Dataset. https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_
housing, 1997.

[11] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad. Intelligible models for healthcare:
Predicting pneumonia risk and hospital 30-day readmission. In SIGKDD, 2015.

[12] C.-H. Chang, R. Caruana, and A. Goldenberg. NODE-GAM: Neural Generalized Additive Model for
Interpretable Deep Learning. In ICLR, 2022.

[13] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In SIGKDD, 2016.

[14] G. Chowdhary. Natural language processing. Fundamentals of Artificial Intelligence, 2020.

[15] Click. KDD Cup 2012, Track 2. https://www.kaggle.com/c/kddcup2012-track2, 2012.

[16] CoverType. Forest CoverType Dataset. https://archive.ics.uci.edu/ml/datasets/Covertype,
1999.

[17] Credit. Credit Card Fraud Detection. https://www.kaggle.com/datasets/mlg-ulb/
creditcardfraud, 2015.

[18] CUB. Caltech-UCSD Birds-200-2011 Dataset. https://www.vision.caltech.edu/datasets/cub_
200_2011, 2011.

[19] A. Dal Pozzolo. Adaptive machine learning for credit card fraud detection. PhD Thesis, Universite libre
de Bruxelles, 2015.

[20] D. Dua and C. Graff. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml, 2019.

[21] Epsilon. Large Scale Learning Challenge. https://www.k4all.org/project/
large-scale-learning-challenge, 2008.

[22] FICO HELOC. FICO Explainable Machine Learning Challenge. https://community.fico.com/s/
explainable-machine-learning-challenge, 2018.

[23] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In AISTATS, 2011.

[24] T. J. Hastie and R. J. Tibshirani. Generalized additive models. Statistical Science, 1986.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

[26] Higgs. HIGGS Dataset. https://archive.ics.uci.edu/ml/datasets/HIGGS, 2014.

[27] iNaturalist. iNaturalist 2021 Competition. https://github.com/visipedia/inat_comp/tree/
master/2021, 2021.

[28] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In ICML, 2015.

[29] P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and P. Liang. Concept bottleneck
models. In ICML, 2020.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In NeurIPS, 2012.

[31] A. Krogh and J. Hertz. A simple weight decay can improve generalization. In NeurIPS, 1991.

11

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing
https://www.kaggle.com/c/kddcup2012-track2
https://archive.ics.uci.edu/ml/datasets/Covertype
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.vision.caltech.edu/datasets/cub_200_2011
https://www.vision.caltech.edu/datasets/cub_200_2011
http://archive.ics.uci.edu/ml
https://www.k4all.org/project/large-scale-learning-challenge
https://www.k4all.org/project/large-scale-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://github.com/visipedia/inat_comp/tree/master/2021
https://github.com/visipedia/inat_comp/tree/master/2021

[32] K. Lang. Newsweeder: Learning to filter netnews. In ICML, 1995.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
COCO: Common objects in context. In ECCV, 2014.

[34] I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In ICLR, 2016.

[35] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR, 2019.

[36] Y. Lou, R. Caruana, and J. Gehrke. Intelligible models for classification and regression. In SIGKDD, 2012.

[37] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible models with pairwise interactions. In
SIGKDD, 2013.

[38] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In NeurIPS, 2017.

[39] J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations.
Philosophical Transactions of the Royal Society, 1909.

[40] Microsoft. Microsoft Learning to Rank Dataset. https://www.microsoft.com/en-us/research/
project/mslr, 2010.

[41] MIMIC-II. Multiparameter Intelligent Monitoring in Intensive Care II. https://archive.physionet.
org/mimic2, 2011.

[42] NAMs. Neural Additive Models. https://github.com/google-research/google-research/
tree/master/neural_additive_models, 2021.

[43] Newsgroups. The 20 Newsgroups Dataset. http://qwone.com/~jason/20Newsgroups, 1995.

[44] H. Nori, S. Jenkins, P. Koch, and R. Caruana. InterpretML: A unified framework for machine learning
interpretability. In arXiv:1909.09223, 2019.

[45] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST handbook of mathematical functions.
Cambridge University Press, 2010.

[46] R. K. Pace and R. Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 1997.

[47] S. Popov, S. Morozov, and A. Babenko. Neural oblivious decision ensembles for deep learning on tabular
data. In ICLR, 2020.

[48] PyTorch. PyTorch: From research to production. https://pytorch.org, 2021.

[49] T. Qin and T.-Y. Liu. Introducing LETOR 4.0 datasets. In arXiv:1306.2597, 2013.

[50] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should i trust you?" Explaining the predictions of any
classifier. In SIGKDD, 2016.

[51] M. Saeed, M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw,
B. Moody, and R. G. Mark. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a
public-access intensive care unit database. Critical care medicine, 2011.

[52] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling LIME and SHAP: Adversarial attacks on
post hoc explanation methods. In AIES, 2020.

[53] D. Slack, A. Hilgard, S. Singh, and H. Lakkaraju. Reliable post hoc explanations: Modeling uncertainty in
explainability. In NeurIPS, 2021.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. JMLR, 2014.

[55] A. M. Tarone and D. R. Foran. Generalized additive models and Lucilia sericata growth: assessing
confidence intervals and error rates in forensic entomology. JFS, 2008.

[56] B. Thelen, N. H. French, B. W. Koziol, M. Billmire, R. C. Owen, J. Johnson, M. Ginsberg, T. Loboda,
and S. Wu. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled
emissions-transport system and generalized additive modeling. Environmental Health, 2013.

[57] J. J. Thiagarajan, B. Kailkhura, P. Sattigeri, and K. N. Ramamurthy. TreeView: Peeking into deep neural
networks via feature-space partitioning. In NeurIPS, 2016.

[58] M. Tsang, H. Liu, S. Purushotham, P. Murali, and Y. Liu. Neural interaction transparency (NIT): Disentan-
gling learned interactions for improved interpretability. In NeurIPS, 2018.

[59] G. Van Horn, E. Cole, S. Beery, K. Wilber, S. Belongie, and O. Mac Aodha. Benchmarking representation
learning for natural world image collections. In CVPR, 2021.

[60] Verizon Media Webscope. Yahoo! Learning to Rank Challenge. https://webscope.sandbox.yahoo.
com/catalog.php?datatype=c, 2010.

[61] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. Deep learning for computer vision: A
brief review. Computational Intelligence and Neuroscience, 2018.

12

https://www.microsoft.com/en-us/research/project/mslr
https://www.microsoft.com/en-us/research/project/mslr
https://archive.physionet.org/mimic2
https://archive.physionet.org/mimic2
https://github.com/google-research/google-research/tree/master/neural_additive_models
https://github.com/google-research/google-research/tree/master/neural_additive_models
http://qwone.com/~jason/20Newsgroups
https://pytorch.org
https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
https://webscope.sandbox.yahoo.com/catalog.php?datatype=c

[62] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset.
California Institute of Technology, 2011.

[63] M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge University Press,
2019.

[64] S. N. Wood. Generalized additive models: an introduction with R. CRC, 2006.

[65] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural
networks. In CVPR, 2017.

[66] Year. Year Prediction MSD Dataset. https://archive.ics.uci.edu/ml/datasets/
yearpredictionmsd, 2011.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sec. A.5.
(b) Did you include complete proofs of all theoretical results? [Yes] See Sec. A.5.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A] No new

assets except code, see 3(a).
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd

A Appendix

A.1 Dataset descriptions

CA Housing [10, 46]. The target to regress is the median house value for California districts (1990 U.S.
census), expressed in hundreds of thousands of dollars, from 8 household-related variables.

FICO [22]. Anonymized dataset of line of credit applications made by real homeowners. The customers
in this dataset have requested a credit line in the range of $5,000 – $150,000. The task is to make a binary
prediction whether applicants will repay their account within 2 years.

CoverType [8, 16, 20]. The samples in this dataset correspond to 30×30m patches of forest in the U.S.,
collected for the task of predicting each patch’s cover type, i.e., the dominant species of tree. There are seven
covertypes, making this a multi-class classification problem.

Newsgroups [32, 43]. This dataset is a collection of news documents, partitioned across 20 different
newsgroups, making this a multi-class classification problem. Each article is represented by a tf-idf term for
each word in the training split word vocabulary. Newsgroups dataset has sparsity 99.9%, i.e., only around 150
words from a vocabulary of 150k words appears per a given article, on average.

MIMIC-II [41, 51]. The task is to make a binary prediction on mortality of Intensive Care Unit (ICU)
patients. Contains physiologic signals and vital signs time series captured from patient monitors for tens of
thousands of ICU patients.

Credit [17, 19]. This dataset contains anonymized credit card transactions labeled as fraudulent or genuine,
and the task is to make a binary prediction between them.

Click [15]. Subset of data from the KDD Cup 2012. Namely, 500,000 objects of a positive class and 500,000
objects of a negative class were randomly sampled to create a binary prediction task. We would like to gratefully
acknowledge the organizers of KDD Cup 2012 as well as Tencent Inc. for making the dataset available.

Epsilon [21]. Dataset for binary prediction from the PASCAL Large Scale Learning Challenge.

Higgs [3, 26]. The problem is to binary predict whether the given event produces Higgs bosons.

Microsoft [40, 49]. Ranking dataset, where features are extracted from query-url pairs. Each pair has
relevance judgment labels to regress, which take values from 0 (irrelevant) to 4 (very relevant).

Yahoo [60]. Another ranking dataset with query-url pairs that have labels to regress from 0 to 4.

Year [66]. Subset of Million Song Dataset. The task is to regress the release year of the song by using the
audio features. It contains tracks from 1922 to 2011.

CUB [18, 62]. This image classification dataset consists of images of 200 bird classes. All images are
annotated with keypoint locations of 15 bird parts (e.g., beak, wing, crown) and each location is associated with
one or more part-attribute labels (e.g., orange leg, striped wing). Some of the keypoint annotations distinguish
between the left-right instances of parts, e.g., ‘left wing’ / ‘right wing’, ‘left eye’ / ‘right eye’. We treat these as
the same part, i.e., ‘left wing’ and ‘right wing’ as ‘wing’.

iNaturalist Birds [27, 59]. Another image classification dataset that contains 1,486 bird classes. The full
iNaturalist 2021 dataset consists of various super-categories (e.g., plants, insects, birds), covering 10K species
in total. The Birds super-category contains 1,486 bird classes and more challenging scenes compared to CUB.
Therefore, the iNaturalist dataset is a challenging testbed for any image classification method. However, note
that this dataset lacks keypoint annotations.

Common Objects. Proprietary object detection dataset created by collecting public images from Instagram1.
Dataset contains 114 common household objects, (e.g., stove, bed, table), plus a background class, with bounding
box locations, 200 parts and 54 attributes. Each bounding box for each image is pre-processed using compositions
of parts (e.g., leg, handle, top) and attributes (e.g., colors, textures, shapes) to extract 2,618 interpretable features
and 100k pairwise feature interactions. Common Objects dataset has sparsity 97%, i.e., only around 76
part-attribute compositions from a vocabulary of 2618 compositions are active for a given object, on average.

1www.instagram.com

14

https://www.instagram.com

Table A.1: Optimal hyper-parameters for NBMs and NB2Ms on all datasets.
NBM: [256, 256, 128] hidden units, 100 basis functions

Dataset Number of Batch Learning Weight Dropout Basis Output
epochs size rate decay dropout penalty

CA Housing 1,000 1,024 0.00197 1.568e-5 0.0 0.05 1.439e-4
FICO 1,000 1,024 0.02176 1.684e-5 0.3 0.7 2.462e-4
CoverType 500 1,024 0.01990 5.931e-7 0.0 0.0 0.05533
Newsgroups 500 512 3.133e-4 1.593e-8 0.1 0.3 4.578
MIMIC-II 1,000 1,024 0.01460 3.177e-6 0.5 0.1 2.318
Credit 500 1,024 0.00391 1.574e-6 0.0 0.9 0.03737
Click 500 1,024 2.745e-4 7.21e-10 0.0 0.5 20.085
Epsilon 500 1,024 3.776e-5 1.507e-7 0.3 0.4 0.00273
Higgs 50 1,024 1.792e-4 1.087e-9 0.0 0.0 3.906e-5
Microsoft 500 1,024 1.677e-4 1.969e-7 0.1 0.3 1.986e-4
Yahoo 500 1,024 0.00446 1.399e-8 0.1 0.3 0.01688
Year 500 1,024 8.780e-5 1.580e-7 0.1 0.1 2.592e-5
CUB 500 128 0.01173 0.12910 0.7 0.3 4.739
iNaturalist Birds 100 1,024 0.00140 3.548e-5 0.0 0.2 1.423e-5
Common Objects 100 1,024 0.12480 1.001e-5 0.1 0.0 0.0

NB2M: [256, 256, 128] hidden units, 200 basis functions

Dataset Number of Batch Learning Weight Dropout Basis Output
epochs size rate decay dropout penalty

CA Housing 1,000 1,024 0.00190 7.483e-9 0.0 0.05 1.778e-6
FICO 1,000 1,024 2.287e-4 3.546e-7 0.1 0.7 0.19330
CoverType 500 512 0.00268 1.660e-7 0.0 0.0 0.00155
MIMIC-II 1,000 1,024 1.796e-4 3.494e-4 0.1 0.5 0.05964
Credit 500 1,024 3.745e-4 4.610e-5 0.5 0.0 0.25280
Click 500 1,024 9.614e-4 0.00159 0.0 0.5 0.05773
Higgs 50 1,024 0.00201 2.202e-4 0.0 0.1 1.969e-7
Microsoft 100 128 1.640e-4 1.552e-8 0.0 0.9 2.928e-6
Year 100 256 3.180e-4 1.696e-8 0.0 0.9 4.454e-4
CUB 500 32 2.629e-4 0.03209 0.0 0.0 96.894
iNaturalist Birds 100 32 6.735e-5 9.870e-5 0.05 0.0 3.785
Common Objects 100 64 0.03127 1.013e-4 0.0 0.2 8.126

A.2 Hyper-parameters

Linear, MLP, NAM, and NBM are trained using the Adam with decoupled weight decay (AdamW) optimizer [35],
on 8×V100 GPU machines with 32 GB memory, and a batch size of at most 1024 per GPU. We train for 1,000,
500, 100, or, 50 epochs, depending on the size and feature dimensionality of the dataset. The learning rate is
decayed with cosine annealing [34] from the starting value until zero. We find optimal hyper-parameters for all
models using validation set and random search, following the detailed guidelines.

Linear. We tune the starting learning rate in the continuous interval [1e−5, 100), weight decay in the interval
[1e−10, 1.0).

MLP. We tune the starting learning rate in the continuous interval [1e−5, 1.0), weight decay in the interval
[1e−10, 1.0), dropout coefficients in the discrete set {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

NAM. We tune the starting learning rate in the continuous interval [1e−5, 1.0), weight decay in the interval
[1e−10, 1.0), output penalty coefficient in the interval [1e−7, 100), dropout and feature dropout coefficients in
the discrete set {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

NBM. We tune the starting learning rate in the continuous interval [1e−5, 1.0), weight decay in the interval
[1e−10, 1.0), output penalty coefficient in the interval [1e−7, 100), dropout and basis dropout coefficients in
the discrete set {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Optimal hyper-parameters for NBMs and
NB2Ms on all datasets are given in Table A.1.

15

1 10 100 1k 10k 100k
0

10

20

30

40

50

60

70

D

|N
A

M
|/
|N

B
M
|

C = 1
C = 10
C = 100
C = 1000

1 10 100 1k 10k 100k
0

10

20

30

40

50

60

70

D

|N
A

2
M
|/
|N

B
2
M
|

Figure A.1: NAM vs. NBM: #parameters (left); NA2M vs. NB2M: #parameters (right).

Finally, for EBMs and XGBoost, CPU machines are used, with hyper-parameter search as follows.

EBM. We tune the maximum bins from the set {8, 16, 32, 64, 128, 256, 512}, number of interactions from
{0, 2, 4, 8, 16, 32, 64, 128, 256, 512} (they are set to 0 for EBMs and ≥ 0 for EB2Ms), learning rate in the
continuous range from [1e−6, 100), the maximum rounds from the set {1000, 2000, 4000, 8000, 16000},
the minimum samples in a leaf node from the set {1, 2, 4, 8, 10, 15, 20, 25, 50}, and the same range is used
for the maximum leaves parameter. For binning, we search within the set {“quantile”, “uniform”, “quan-
tile_humanized”}. The inner bags and outer bags are selected from the range {1, 2, 4, 8, 16, 32, 64, 128}.

XGBoost. We tune the number of estimators from {1, 2, 4, 8, 10, 20, 50, 100, 200, 250, 500, 1000}, the max-
depth from the set {∞, 2, 5, 10, 20, 25, 50, 100, 2000}, η over a continuous range [0.0, 1.0), and use the same
for the subsample and colsample_bytree parameters.

A.3 Additional discussion w.r.t. NAM

Number of parameters for multi-class and pairwise feature interactions. We compare number of
weight parameters needed to learn NAM vs. NBM for the multi-class task. This discussion is an extension of the
discussion in Section 3.3. Let us denote with M the number of parameters in MLP for each feature in NAM,
and with N the number of parameters in MLP for bases in NBM. In most experiments the optimal NAM has 3
hidden layers with 64, 64 and 32 units (M = 6401), and, NBM has 3 hidden layers with 256, 128, 128 units
(N = 62820) and B = 100 basis functions. Finally, let us denote with D the input feature dimensionality, and
with C the number of classes in the multi-class task. Then the ratio of number of parameters in NAM vs. NBM
is given by,

|NAM|
|NBM| =

D ·M +D · C
N +D ·B +D · C =

6401 + C
62820

D
+ 100 + C

. (A.1)

Similarly, in the case of pairwise feature interactions in NA2M vs. NB2M, this ratio is given by,

|NA2M|
|NB2M|

=
D(D−1)

2
·M + D(D−1)

2
· C

N + D(D−1)
2

·B + D(D−1)
2

· C
=

6401 + C
125640
D(D−1)

+ 100 + C
. (A.2)

Figure A.1 shows both ratios for different values of feature dimensionality D and number of classes C.

For unary features (NAM vs. NBM, Figure A.1 left), the conclusion is the same as in the case of binary
classification, i.e., for D = 10, NBMs and NAMs have roughly equal number of parameters, for any given value
of C. For higher number of classes, NBMs still provide significant gain over NAMs, however, that gain starts
decreasing, due to the fact that the final linear classifier starts becoming the most memory hungry part of the
model. Nevertheless, even with C = 1,486 and D = 278 in iNaturalist Birds, which has the most classes from
the datasets we used, NBMs have around 5× less parameters than NAMs, see Table 2.

For pairwise feature interactions (NA2M vs. NB2M, Figure A.1 right), the ratio is much more pronounced, i.e.,
already at D = 5, NB2Ms and NA2Ms have equal number of parameters, and the growth of the ratio w.r.t. D is
much more significant. Already after few hundred feature dimensions the ratio is at peak.

16

Throughput optimization of NAMs. Neural Additive Models (NAMs) [2] learn an MLP network for
each input feature, followed by a linear combination to make a prediction. Official implementation [42] runs
a for loop over all networks, which results in a poor GPU utilization. More precisely, this implementation
requires extremely large batches (>>1,024) per GPU to make the training efficient, which is impractical. We do
recognize that efficiency was not of highest priority to the authors [2], but in our case we are scaling GAMs to
multi-class datasets with order of million data points. Thus, to facilitate a fair comparison against our NBMs, we
reimplement NAMs using grouped convolutions [30, 65], which are readily available in standard deep learning
libraries. Namely, we stack corresponding hidden layers of all MLPs (e.g., first hidden layer of all MLPs) into a
grouped 1-D convolution, where number of groups equals the number of features. The computation performed
is identical to original NAMs, i.e. there is no feature interaction, while achieving around ×2–×10 speedup,
depending on the dataset. We perform the same implementation trick to NA2Ms, as well.

A.4 Additional visualization

The interpretability of GAMs comes from the fact that the learned shape functions can be easily visualized. In
the same manner as the other GAM approaches, each feature’s importance in an NBM can be represented by a
unique shape function that exactly describes how the NBM computes a prediction. For an example, see Figure 3
visualization on the CA Housing dataset. We additionally demonstrate this on the CUB image classification
dataset that consists of 200 bird classes, where each image is represented by interpretable features, e.g., a “bird”
image can be represented with “striped wings”, “needle-shaped beak”, “long legs”, etc., that are predicted from
the image using a convolutional-neural-network (CNN) model. We present visualizations of shape functions
with highest positive or negative contribution to 6 randomly selected bird classes, see Figures A.2 and A.3.

Towards this purpose, we train an ensemble of 20 models by running different random seeds with optimal hyper-
parameters, in order to analyze when the models learn the same shape and when they diverge. Following Agarwal
et al. [2], we set the average score for each shape function to be zero by subtracting the respective mean feature
score. Next, we plot each shape function as fi(xi) vs. xi for each model in the ensemble using a semi-transparent
line, and an average ensemble shape function using a thick line. Finally, the x-axis is divided by bars depicting
the normalized data density, i.e., darker areas contain more data points. Figures A.2 and A.3 depict few image
examples for the respective class (upper row), and an ensemble of NBMs (bottom row). We visually observe
that NBMs provide a strong interpretable overview of the respective bird class, and that the shape functions do
not diverge significantly even in the cases where there are only few data points (light / white areas in the graphs).

Sooty Albatross

0.15 0.30 0.45 0.60 0.75
has back color::black

−2

−1

0

1

2

3

C
la

ss
C

on
tr

ib
u

ti
on

0.15 0.30 0.45 0.60 0.75
has wing shape::long-wings

−2

−1

0

1

2

3

0.1 0.2 0.3 0.4
has wing pattern::striped

−2

−1

0

1

2

3

0.1 0.2 0.3 0.4
has bill shape::all-purpose

−2

−1

0

1

2

3

0.1 0.2 0.3
has head pattern::spotted

−2

−1

0

1

2

3

0.2 0.4 0.6 0.8
has back color::white

−2

−1

0

1

2

3

0.2 0.4 0.6 0.8
has leg color::black

−2

−1

0

1

2

3

0.1 0.2 0.3 0.4 0.5
has under tail color::white

−2

−1

0

1

2

3

Crested Auklet

0.2 0.4 0.6 0.8
has nape color::white

−2

−1

0

1

2

3

C
la

ss
C

on
tr

ib
u

ti
on

0.2 0.4 0.6 0.8
has crown color::white

−2

−1

0

1

2

3

0.2 0.4 0.6 0.8
has leg color::brown

−2

−1

0

1

2

3

0.15 0.30 0.45 0.60
has breast pattern::solid

−2

−1

0

1

2

3

0.1 0.2 0.3 0.4 0.5
has bill color::orange

−2

−1

0

1

2

3

0.2 0.4 0.6 0.8
has leg color::yellow

−2

−1

0

1

2

3

0.1 0.2 0.3 0.4
has belly color::grey

−2

−1

0

1

2

3

0.15 0.30 0.45 0.60
has wing shape::pointed-wings

−2

−1

0

1

2

3

Figure A.2: CUB bird class image examples (upper row) and NBM shape functions fi (bottom row)
with highest positive or negative contribution to the respective bird class prediction.

17

Red-winged Blackbird

0.1 0.2 0.3 0.4 0.5
has wing color::orange

−2

−1

0

1

2

C
la

ss
C

on
tr

ib
u

ti
on

0.1 0.2 0.3 0.4 0.5
has wing color::red

−2

−1

0

1

2

0.1 0.2 0.3 0.4
has wing pattern::striped

−2

−1

0

1

2

0.15 0.30 0.45 0.60
has wing color::brown

−2

−1

0

1

2

0.1 0.2 0.3 0.4
has wing pattern::multi-colored

−2

−1

0

1

2

0.1 0.2 0.3 0.4 0.5
has belly color::black

−2

−1

0

1

2

0.1 0.2
has back color::orange

−2

−1

0

1

2

0.15 0.30 0.45 0.60
has back color::grey

−2

−1

0

1

2

Yellow-headed Blackbird

0.2 0.4 0.6 0.8
has throat color::black

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

C
la

ss
C

on
tr

ib
u

ti
on

0.2 0.4 0.6 0.8
has nape color::yellow

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.1 0.2 0.3 0.4
has wing pattern::striped

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.1 0.2 0.3 0.4 0.5
has belly color::black

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.1 0.2 0.3 0.4 0.5
has underparts color::black

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.15 0.30 0.45 0.60
has wing color::grey

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.1 0.2 0.3 0.4
has breast pattern::multi-colored

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.15 0.30 0.45 0.60
has wing color::olive

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Eastern Towhee

0.1 0.2 0.3 0.4
has wing pattern::striped

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

C
la

ss
C

on
tr

ib
u

ti
on

0.2 0.4 0.6 0.8
has nape color::white

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

0.1 0.2 0.3 0.4
has breast pattern::multi-colored

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

0.1 0.2 0.3 0.4
has underparts color::brown

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

0.1 0.2 0.3 0.4 0.5
has bill shape::cone

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

0.1 0.2 0.3 0.4
has wing pattern::multi-colored

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

0.1 0.2 0.3 0.4
has belly color::grey

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

0.15 0.30 0.45 0.60
has bill shape::spatulate

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Brown Creeper

0.1 0.2 0.3 0.4 0.5
has wing pattern::spotted

−3

−2

−1

0

1

2

3

4

C
la

ss
C

on
tr

ib
u

ti
on

0.1 0.2 0.3
has bill shape::hooked

−3

−2

−1

0

1

2

3

4

0.2 0.4 0.6 0.8
has leg color::orange

−3

−2

−1

0

1

2

3

4

0.15 0.30 0.45 0.60
has wing color::brown

−3

−2

−1

0

1

2

3

4

0.15 0.30 0.45 0.60
has bill shape::spatulate

−3

−2

−1

0

1

2

3

4

0.1 0.2 0.3 0.4 0.5
has bill shape::curved (up or down)

−3

−2

−1

0

1

2

3

4

0.1 0.2 0.3 0.4 0.5
has back pattern::multi-colored

−3

−2

−1

0

1

2

3

4

0.2 0.4 0.6 0.8
has nape color::orange

−3

−2

−1

0

1

2

3

4

Figure A.3: CUB bird class image examples (upper row) and NBM shape functions fi (bottom row)
with highest positive or negative contribution to the respective bird class prediction.

18

A.5 Learning-Theoretic Guarantees for Basis Models in a RKHS

As discussed briefly in the main paper, it is possible to develop a more rigorous argument for the use of a small
set of basis functions instead of a complete generalized additive model. To elucidate we first require establishing
some notation: We represent matrices by uppercase boldface, e.g., X and vectors by lowercase boldface, i.e.,
x. We assume that the covariates lie within the set X ⊆ RD , and the labels lie within the finite set Y . Data
(x, y) ∈ X × Y are drawn following some unknown (but fixed) distribution P. We assume we are provided
with n i.i.d. samples {(xi, yi)}ni=1 as the train set.

Consider a generalized additive model (GAM) g : X → Y:

g(x) =

D∑
i=1

wi · fi(xi).

Assume that the shape functions f1, . . . , fD; fi : R → Y have a maximum norm BH > 0 in some Reproducing
Kernel Hilbert Space (RKHS, [7]) H endowed with a PSD kernel k(·, ·) : R×R → R and feature ϕ : R → RdH ,
i.e., ∥fi∥H ≤ BH, and w = {wi}Di=1 ∈ RD , k(x, y) = ϕ(x)⊤ϕ(y) such that ∥w∥2 ≤ Bw for Bw > 0. This
characterization corresponds to a family of functions HA, i.e.,

HA = {g | g(x) =
D∑
i=1

wifi(xi), ∥fi∥H ≤ BH, ∥w∥2 ≤ Bw} (A.3)

The idea behind the basis decomposition approach highlighted in this paper is to only use a fixed number of
bases, B, to model each fi. Observe that one can obtain rigorous guarantees for fi that lie within an RKHS using
Mercer’s Theorem [39]. We have that if the kernel k associated with the RKHS H is continuous, positive-definite
and symmetric, there exist a set of eigenvalues {λi}∞i=1 and eigenfunctions (basis functions) {ωi}∞i=1 that form
an orthonormal basis for k, i.e., for any x, y ∈ R,

k(x, y) =

∞∑
i=1

λiωi(x)ωi(y). (A.4)

Where the bases are orthonormal, i.e.,
∫
x∈R ωi(x)ωj(x)dx = 0 for i ̸= j and 1 otherwise. This representation

naturally gives a form for ϕ(·) = [
√
λiωi(·)]∞i=1. Furthermore, we have that for each f ∈ H there exists

f ∈ L2 such that f(x) = ⟨f ,ϕ(x)⟩H∀x ∈ R. Note once again that the reproducing kernel Hilbert space H
corresponds to the feature-wise functions f , whereas the space HA corresponds to the overall function g. Now,
we can define, for the family HA a Generalized Basis Model of order B (denoted as HB) as the following.
Definition 1. A Generalized Basis Model of order B for any function class HA that satisfies the characterization
in Equation A.3 for some (H, BH, Bw) is given by the family HB :

HB =

 g(x) =
∑D

i=1 wifi(xi),

g fi(·) =
∑B

j=1 βijhj(·), ∥fi∥H ≤ BH, ∥w∥2 ≤ Bw,
hi ∈ H, hi ⊥ hj∀ i ̸= j.


Where orthogonality (⊥) is defined as hi ⊥ hj =⇒

∫
x∈R hi(x) · hj(x)dx = 0.

Next, note that by Mercer’s Theorem, for each function f ∈ H, there exists f = {fi}∞i=1,f ∈ L2 such
that f(x) = ⟨f ,ϕ(x)⟩H. Combining this statement with the basis representation for ϕ gives us an alternate
representation of any f ∈ H, as

f(·) =
∞∑
i=1

fi
√
λiωi(·).

Under this representation, we can relate the two spaces HA and HB as follows.
Proposition 1. For any H, dimensionality D, and number of basis functions B > 0, HB ⊆ HA.

Proof. Follows from Mercer’s Theorem [39]. Any g ∈ HB can be written as a linear combination of functions
in H (and consequently HA), each of which admit a basis representation via Mercer’s Theorem, where all but B
components have coefficient 0. In the limit B → ∞, HB = HA.

Since the basis functions in HB lie on a finite-dimensional subspace within H spanned by B basis vectors,
we can without loss of generality, assume that these B basis vectors correspond to {ωi}Bi=1 obtained from
Equation A.4. Now, to prove generalization bounds on the best function learnable in HB and contrast that
with HA, we require a “smoothing” assumption in {ωi}∞i=1 (and correspondingly on H). The essence of this
assumption is to ensure that the kernel H can be spanned without introducing much error by only with a few basis
components, and is similar to smoothing kernel assumptions made in other areas as well, e.g., in reinforcement
learning.

19

Assumption 1 (γ-Exponential Spectral Decay of H). For the decomposition of H as outlined in Equation A.4,
we assume that there exist absolute constants C1 < 1 and C2 = O(1) and parameter γ such that λi ≤
C1 exp(−C2 · iγ) for each i ≥ 1.

At a high level, our approach is to bound the test error of the empirical risk minimizer in HA, with the optimal
risk minimizer in HB to demonstrate that learning a generalized basis model does not incur significantly larger
error compared to learning the full model. We first make these terms precise. Recall that the empirical risk for
any function g is given by L̂n(g) =

1
n

∑n
i=1 ℓ(g(xi), yi). We denote ĝ as the empirical risk minimizer within

HB , i.e.,

ĝ = argmin
g∈HB

L̂n(g). (A.5)

Similarly, the expected risk can be given, for any function g as L = E(x,y)∼P [ℓ(g(x), y)]. Then we can define
the optimal expected risk minimizer g⋆ in HA as,

g⋆ = argmin
g∈HA

L(g). (A.6)

We are now equipped to discuss our generalization bound.
Theorem 1. Let ℓ be a 1-Lipschitz loss, δ ∈ (0, 1] and Assumption 1 hold with constants C1, C2, γ. Then we
have that with probability at least 1− δ there exist absolute constants C1, C2 such that,

L(ĝ)− L(g⋆) ≤ 2Bw

√
B

n
+

DC2

C1
exp(−Bγ) + 5

√
log (4/δ)

n
.

Proof. We will denote the weights and singular values for f⋆ as w⋆ and λ⋆
ij , i.e., g⋆(x) =

∑D
i=1 w

⋆
i h

⋆
i (xi)

where h⋆
i (x) =

∑∞
j=1 λ

⋆
ijωj(x). Note that this represnetation exists for some λ⋆

ij by Mercer’s Theorem, as
discussed earlier. For any HB ,HA, consider the function g̃ ∈ HB that is a truncated version of g⋆ up to b

bases, i.e., g̃(x) =
∑D

i=1 w
⋆
i h̃i(xi) where h̃i(x) =

∑b
j=1 λ

⋆
ijωj(x). Clearly, g̃ ∈ HB . We can then rewrite

the L.H.S. in the Theorem as,

L(ĝ)− L(g⋆) = L(ĝ)− L̂n(ĝ)︸ ︷︷ ︸
A

+ L̂n(ĝ)− L̂n(g̃)︸ ︷︷ ︸
≤0

+ L̂n(g̃)− L(g)︸ ︷︷ ︸
B

.

Note that the middle term L̂n(ĝ) − L̂n(g̃) ≤ 0 since ĝ is the empirical risk minimizer in HB . Hence, by
bounding terms A and B , the proof will be complete. We can bound B via Lemma 1. We have that with
probability at least 1− δ/2 for any δ ∈ (0, 1],∣∣∣L̂n(g̃)− L(g⋆)

∣∣∣ ≤ L · C1

C2
exp(−Bγ) + 2

√
log (2/δ)

n
.

We bound A via bounding the Rademacher complexity [63]. Since the loss function is Lipschitz and bounded,
with probability at least 1 − δ/2, δ ∈ (0, 1], we have that by Theorem 12 and Theorem 8 of Bartlett and
Mendelson [4],

L(ĝ)− L̂n(ĝ) ≤ Rn(ℓ⊙HB) +

√
8 log(4/δ)

n
. (A.7)

Where Rn denotes the empirical Rademacher complexity at n samples [4]. Observe that each element of
HB is a linear combination of d elements that are represented by b basis vectors in H. Hence, there exist
weights {{αij}Di=1}Bj=1 such that any f ∈ HB can be written as

∑
i,j αijωj(xi), ∥α∥2 ≤ BHBw where

α = {{αij}Di=1}Bj=1. Furthermore, we have that for any x ,ϕ(x)⊤ϕ(x) =
∑B

j=1 ωj(xi)
2 ≤ B. We therefore

have, by Theorem 12 of [4] that with probability at least 1− δ/2, δ ∈ (0, 1],

L(ĝ)− L̂n(ĝ) ≤ Rn(ℓ⊙HB) +

√
8 log(4/δ)

n

≤ 2LRn(HB) +

√
8 log(4/δ)

n

≤ 2LBwRn(H) +

√
8 log(4/δ)

n

≤ 2LBw

√
B

n
+

√
8 log(4/δ)

n

The last inequality follows from Lemma 22 of [4]. Replacing the above result for k, we have that with probability
at least 1− δ/2, Using the bound for term B and applying a union bound provides us the final result.

20

Lemma 1. The following holds with probability at least 1− δ, δ ∈ (0, 1], for some absolute constant C ≪ 1,∣∣∣L̂n(g̃)− L(g⋆)
∣∣∣ ≤ LD · C1

C2
exp(−Bγ) + 2

√
log (2/δ)

n
.

Proof.

L̂n(g̃)− L(g⋆) = L̂n(g̃)− L(g̃) + L(g̃)− L(g⋆)

≤
∣∣∣L̂n(g̃)− L(g̃)

∣∣∣︸ ︷︷ ︸
1

+ |L(g̃)− L(g⋆)|︸ ︷︷ ︸
2

.

To bound 1 , we have that for any (x, y) within the training set, E[ℓ(g̃(x), y)] = L(g̃) and 0 ≤ ℓ(·, ·) ≤ 1. By
Azuma-Hoeffding, we obtain with probability at least 1− δ, δ ∈ (0, 1],∣∣∣L̂n(g̃)− L(g̃)

∣∣∣ ≤ 2

√
log (2/δ)

n
.

For 2 , since ℓ is L−Lipschitz, we have for some x1, x2, y ∈ Y ,

|ℓ(x1, y)− ℓ(x2, y)| ≤ |L · |x1 − y| − L · |x2 − y||
≤ L · |x1 − x2| .

Therefore:

|L(g̃)− L(g⋆)| ≤
∣∣E(x,y)∼P [ℓ(g̃(x), y)− ℓ(g⋆(x), y)]

∣∣
≤ E(x,y)∼P [|ℓ(g̃(x), y)− ℓ(g⋆(x), y)|]
≤ L · E(x,y)∼P [|g̃(x)− g⋆(x)|]
≤ L · sup

x∈X
|g̃(x)− g⋆(x)| .

Observe now that for any x ∈ X ,

|g̃(x)− g⋆(x)| =

∣∣∣∣∣
D∑
i=1

∞∑
j=1

(λ⋆
ij − λ̃ij)ωj(xi)

∣∣∣∣∣ ≤
D∑
i=1

B∑
j=1

∣∣∣(λ⋆
ij − λ̃ij)

∣∣∣ ≤ D∑
i=1

∞∑
j=B+1

|λ⋆
ij |.

Invoking Assumption 1, we have that

D∑
i=1

∞∑
j=B+1

|λ⋆
ij | ≤ D

∞∑
j=B+1

C1 exp(−C2j
γ) ≤ D

∫ ∞

j=B

C1 exp(−C2j
γ).

Since γ ≥ 1, we have, ∫ ∞

j=ri

C1 exp(−C2j
γ) ≤ C1

C2
exp (−Bγ) .

A union bound for both parts finishes the proof.

Discussion. The result holds when the target function class is a member of a Reproducing Kernel Hilbert Space
(RKHS). While RKHSes include a variety of expressive machine learning function classes, e.g., radial basis
functions, polynomials, linear classifiers, it is not known whether arbitrarily initialized neural networks have a
small norm in any RKHS with desirable properties. Most notably, however, it was shown recently that certain
neural networks can be represented via the Neural Tangent Kernel (NTK), an example of where the theory can
be applied as-is. More generally, however, this result demonstrates for arbitrary infinite-dimensional RKHS, we
have an exponential dependence on the number of basis B required in the approximation error (second term).
Observe that if we set B = O(logD), the second term is o(1) and goes to 0 as n → ∞, which suggests that in
practice, we only require a number of bases, B that grows logarithmically with the dimensionality D.

21

	Introduction
	Related work
	Method
	Background
	Our model architecture
	Discussion

	Experiments
	Datasets
	Baselines
	Implementation details
	Comparison with baselines
	Comparison with state of the art
	Stability and interpretability
	Ablation study

	Conclusion and future work
	Appendix
	Dataset descriptions
	Hyper-parameters
	Additional discussion w.r.t. NAM
	Additional visualization
	Learning-Theoretic Guarantees for Basis Models in a RKHS

