# Visual Retrieval with Compact Image Representations

Filip Radenović

PhD Thesis Defence Supervisor: Ondřej Chum

### Visual Retrieval



photo collection

**Retrieved Images** 

## Addressed Challenges

#### Viewpoint and/or scale change



#### **Illumination change**



#### Visually similar but different



#### **Different image modalities**



#### Occlusion



#### **Billions of images**

- Memory requirement
- Processing time
- Search time

# Improving Bag-of-Words-Based Compact Image Retrieval

F. Radenovic, H Jegou, O. Chum. Multiple Measurements and Joint Dimensionality Reduction for Large Scale Image Search with Short Vectors. ICMR, 2015.

## Bag-of-Words (BoW) approach



Sivic, Zisserman: Video Google, ICCV 2003

Philbin, Chum, Isard, Sivic, Zisserman: Object retrieval with large vocabularies and fast spatial matching, CVPR 2007

# PCA dimensionality reduction

High dimensional sparse BOW image representation

\*Search is done using inverted files



128 dimensional dense image representation

\*Search is done using (approximate) nearest-neighbors

- Centering emphasize negative evidence, higher importance of jointly missing visual words
- PCA rotation decorrelating and allowing to remove least informative dimensions
- Whitening addresses over-counting (burstiness, co-occurence)







Jegou, Chum: Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening, ECCV 2012

## PCA reduction of multiple vocabularies

- 1. Multiple vocabularies are built using different k-means initializations
- 2. BOW vectors are concatenated
- 3. Concatenated BOW vectors are jointly PCA-reduced and whitened



Different vocabulary initializations

Different vocabulary sizes

Jegou, Chum: Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening, ECCV 2012

### Multiple measurement regions

Construct vocabularies at multiple relative scales of the measurement regions:



### $0.5 \times r \quad 0.75 \times r \quad 1 \times r \quad 1.25 \times r \quad 1.5 \times r$

 $r = 3\sqrt{3}$  – relative change in the measured area radius compared to detected area radius



# Multiple rooted SIFT descriptors

- Combine SIFT and SIFT with every component to the power of 0.4 (SIFT<sup>0.4</sup>), 0.5 (SIFT<sup>0.5</sup>), 0.6 (SIFT<sup>0.6</sup>) to create four different vocabularies
- SIFT descriptors + Euclidian = hyperplanes
- RootSIFTs + Euclidian = curved hypersurfaces in SIFT space







# Training Convolutional Neural Networks for Image Retrieval

J. L. Schonberger, F. Radenovic, O. Chum, J. Frahm. From Single Image Query to Detailed 3D Reconstruction. CVPR, 2015.

F. Radenovic, J. L. Schonberger, D. Ji, J. Frahm, O. Chum, J. Matas. From Dusk till Dawn: Modeling in the Dark. CVPR, 2016.

F. Radenovic, G. Tolias, O. Chum. CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples. ECCV, 2016.

F. Radenovic, G. Tolias, O. Chum. Fine-tuning CNN Image Retrieval with No Human Annotation. TPAMI, 2018.

### Training dataset



Large Internet photo collection





Convolutional Neural Network (CNN)

### Retrieval-Structure-from-Motion pipeline



Sideways right

### Retrieval-Structure-from-Motion pipeline

# Camera Orientation Known Number of Inliers Known

7.4M images  $\rightarrow$  713 training 3D models

### Hard negative examples

**Negative examples:** images from different 3D models than the query **Hard negatives:** closest negative examples to the query **Only hard negatives:** as good as using all negatives, but faster

#### increasing CNN descriptor distance to the query

query









the most similar

**CNN descriptor** 







naive hard negatives

top k by CNN





diverse hard negatives top k: one per 3D model







### Hard positive examples

**Positive examples:** images that share 3D points with the query **Hard positives:** positive examples not close enough to the query



## CNN siamese learning



## **CNN** siamese learning



### Image representation





conv<sub>5</sub> filter 1



....

conv<sub>5</sub> filter 2



conv₅ filter k



conv₅ filter K

....

Generalized-mean pooling (GeM):  $f_k = \left(\frac{1}{|\mathcal{X}_k|} \sum_{x \in \mathcal{X}_k} x^p\right)^{\frac{1}{p}} \begin{array}{c} p \to \infty \text{ MAC} \\ p = 1 \quad \text{SPoC} \end{array}$ 

Image descriptor:  $\boldsymbol{f} = [f_1 \dots f_k \dots f_K]$ 

Max pooling (MAC):  $f_k = \max_{x \in \mathcal{X}_k} x$ Sum pooling (SpOC):  $f_k = \frac{1}{|\mathcal{X}_k|} \sum_{x \in \mathcal{X}_k} x$ 

# Whitening and dimensionality reduction



- 1. PCA<sub>w</sub> PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- L<sub>w</sub> We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]
- 3. End-to-end Learning Performs comparable or worse than L<sub>w</sub>, while slowing down the convergence

### Teacher vs. Student (VGG)

| Method        | Oxf5k | Oxf105k | Par6k | Par106k |
|---------------|-------|---------|-------|---------|
| BoW(16M)+R+QE | 84.9  | 79.5    | 82.4  | 77.3    |
| CNN-MAC(512D) | 79.7  | 73.9    | 82.4  | 74.6    |

### Teacher vs. Student (VGG)

| Method           | Oxf5k | Oxf105k | Par6k | Par106k |
|------------------|-------|---------|-------|---------|
| BoW(16M)+R+QE    | 84.9  | 79.5    | 82.4  | 77.3    |
| CNN-MAC(512D)    | 79.7  | 73.9    | 82.4  | 74.6    |
| CNN-GeM(512D)    | 86.4  | 81.3    | 88.1  | 81.7    |
| CNN-GeM(512D)+QE | 90.7  | 88.6    | 92.2  | 88.0    |

Our CNN with GeM layer surpasses its teacher on all datasets!!!

# Image Retrieval: State of the Art Evaluation

F. Radenovic, A. Iscen, G. Tolias, Y. Avrithis, O. Chum. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking. CVPR, 2018.

# Revisiting Oxford and Paris: What was wrong?

• Annotation errors: skewed comparison of different methods



Original labeling mistakes: **Query (blue)** image and the associated database images that were originally marked as **negative (red)** or **positive (green)**.

- **Solved:** saturated performance, every challenging image labeled as *Junk*
- **Over-fitting:** small datasets, extension Oxford 100k (easy, false negatives)



Examples of false negative images in Oxford100k.

# Revisiting Oxford and Paris: What is new?

- Errors in the annotation are fixed
- Labeling of all images is revisited
- New distractor dataset with 1 million images is created
- Images are chosen to be challenging for these two benchmarks
- New set of 15 queries per benchmark is added
- New set of evaluation protocols with increasing difficulty: Easy (E), Medium (M), and Hard (H)

### State of the art evaluation

#### Time and Memory

|                       | Memory  | Time (sec)     |                 |        |  |  |  |
|-----------------------|---------|----------------|-----------------|--------|--|--|--|
| Method                | wiemory | Extra          | Search          |        |  |  |  |
|                       | (GB)    | (GB) GPU CPU   |                 | Scaren |  |  |  |
| HesAff-rSIFT-ASMK*    | 62.0    | $n/2 \pm 0.06$ | $1.08 \pm 2.35$ | 0.98   |  |  |  |
| HesAff-rSIFT-ASMK*+SP | 02.0    | 11/a + 0.00    | $1.06 \pm 2.55$ | 2.00   |  |  |  |
| DELF-ASMK*+SP         | 10.3    | 0.41 + 0.01    | n/a + 0.54      | 0.52   |  |  |  |
| A-[FT]-GeM            | 0.96    | 0.12           | 1.99            | 0.38   |  |  |  |
| V–[FT]–GeM            | 1.92    | 0.23           | 31.11           | 0.56   |  |  |  |
| R-[FT]-GeM            | 7.68    | 0.37           | 14.51           | 1.21   |  |  |  |

#### mAP Old vs New

| Method            | Ovf  | ROxford |      |      | Dor  | RParis |      |      |
|-------------------|------|---------|------|------|------|--------|------|------|
| Method            | UM   | Е       | М    | Η    | 1 41 | Е      | М    | Η    |
| HesAff-rSIFT-SMK* | 78.1 | 74.1    | 59.4 | 35.4 | 74.6 | 80.6   | 59.0 | 31.2 |
| R-[O]-R-MAC       | 78.3 | 74.2    | 49.8 | 18.5 | 90.9 | 89.9   | 74.0 | 52.1 |
| R-[FT]-GeM        | 87.8 | 84.8    | 64.7 | 38.5 | 92.7 | 92.1   | 77.2 | 56.3 |
| R-[FT]-GeM+DFS    | 90.0 | 86.5    | 69.8 | 40.5 | 95.3 | 93.9   | 88.9 | 78.5 |

#### State-of-the-art performance

|                                                                                                                          |          | Medium           |         |       |      | Hard             |       |       |  |
|--------------------------------------------------------------------------------------------------------------------------|----------|------------------|---------|-------|------|------------------|-------|-------|--|
| Method                                                                                                                   | ROxf     | $+\mathcal{R}1M$ | RPar-   | +R1M  | ROxf | $+\mathcal{R}1M$ | RPar- | +R1M  |  |
|                                                                                                                          | mAP      | mP@10            | mAP     | mP@10 | mAP  | mP@10            | mAP   | mP@10 |  |
| HesAff-rSIFT-VLAD                                                                                                        | 17.4     | 34.8             | 19.6    | 76.1  | 5.6  | 7.0              | 3.3   | 21.1  |  |
| HesAff-rSIFT-SMK*+SP                                                                                                     | 38.1     | 67.1             | 34.5    | 89.3  | 17.7 | 30.3             | 11.0  | 49.1  |  |
| HesAff-rSIFT-ASMK*+SP                                                                                                    | 46.8     | 79.6             | 42.3    | 95.3  | 26.9 | 45.3             | 16.8  | 65.3  |  |
| DELF-ASMK*+SP                                                                                                            | 53.8     | 81.1             | 57.3    | 98.3  | 31.2 | 50.7             | 26.4  | 75.7  |  |
| R – [O] –MAC                                                                                                             | 24.2     | 43.7             | 40.8    | 93.0  | 5.7  | 14.4             | 18.2  | 67.7  |  |
| R - [O] - SPoC                                                                                                           | 21.5     | 40.4             | 41.6    | 92.0  | 2.8  | 5.6              | 15.3  | 54.4  |  |
| R - [O] - CroW                                                                                                           | 21.2     | 39.4             | 42.7    | 92.9  | 3.3  | 9.3              | 16.3  | 61.6  |  |
| R - [O] - GeM                                                                                                            | 25.6     | 45.1             | 46.2    | 94.0  | 4.7  | 13.4             | 20.3  | 70.4  |  |
| R - [O] - R - MAC                                                                                                        | 29.2     | 48.9             | 49.3    | 93.7  | 4.5  | 13.0             | 21.3  | 67.4  |  |
| R - [FT] - GeM                                                                                                           | 45.2     | 71.7             | 52.3    | 95.3  | 19.9 | 34.9             | 24.7  | 73.3  |  |
| R - [FT] - R - MAC                                                                                                       | 39.3     | 62.1             | 54.8    | 93.9  | 12.5 | 24.9             | 28.0  | 70.0  |  |
| Query expansion (QI                                                                                                      | E) and c | liffusio         | n (DFS) | )     |      |                  |       |       |  |
| HesAff-rSIFT-HQE                                                                                                         | 42.7     | 67.4             | 44.2    | 90.1  | 23.2 | 37.6             | 20.3  | 51.4  |  |
| HesAff-rSIFT-HQE+SP                                                                                                      | 52.0     | 76.7             | 46.8    | 93.0  | 29.8 | 50.1             | 21.8  | 61.9  |  |
| DELF-HQE+SP                                                                                                              | 60.6     | 79.7             | 65.2    | 96.1  | 37.9 | 56.1             | 35.8  | 69.1  |  |
| $R - [FT] - GeM + \alpha QE$                                                                                             | 49.0     | 74.7             | 58.0    | 95.9  | 24.2 | 40.3             | 31.0  | 80.4  |  |
| R - [FT] - GeM + DFS                                                                                                     | 61.5     | 77.1             | 84.9    | 95.9  | 33.1 | 48.2             | 71.6  | 93.7  |  |
| R - [FT] - R-MAC+DFS                                                                                                     | 56.6     | 68.6             | 83.2    | 93.3  | 28.4 | 43.6             | 70.4  | 89.1  |  |
| $HesAff-rSIFT-ASMK^*+SP \rightarrow R-[FT]-GeM+DFS$                                                                      | 74.3     | 87.9             | 85.9    | 97.1  | 48.7 | 65.9             | 73.2  | 96.6  |  |
| $  \text{HesAff}-r\text{SIFT}-A\text{SMK}^*+\text{SP} \rightarrow \text{R}-[\text{FT}]-\text{R}-\text{MAC}+\text{DFS}  $ | 74.9     | 87.9             | 87.5    | 97.1  | 47.5 | 62.4             | 76.0  | 96.3  |  |
| $DELF-ASMK^*+SP \rightarrow R-[FT]-R-MAC+DFS$                                                                            | 68.7     | 83.6             | 86.6    | 98.1  | 39.4 | 55.7             | 74.2  | 94.6  |  |

# Targeted Mismatch Adversarial Attack to Conceal the Query Image

G. Tolias, F. Radenovic, O. Chum. Targeted Mismatch Adversarial Attack: Query with a Flower to Retrieve the Tower. ICCV, 2019.

### Misclassification Adversarial Attack



"cat"

Untargeted: NOT "cat" Targeted: "dog"

### Targeted Mismatch Adversarial Attack















### Attacking unknown test-resolution

4030 mAP 20100 400600 800 1,000 **Test-resolution** 

#### **AlexNet-GeM on R-Paris**

No attack

### Attacking unknown test-resolution

No attack

Single attack-resolution [1024]

#### **AlexNet-GeM on R-Paris**



### Attacking unknown test-resolution

No attack

Single attack-resolution [1024]

Set of attack-resolutions with high-frequency removal

#### **AlexNet-GeM on R-Paris**



**Test-resolution** 

### Concealing/revealing the target



# Training Convolutional Neural Networks for Shape Matching

F. Radenovic, G. Tolias, O. Chum. Deep Shape Matching. ECCV, 2018.

F. Radenovic, G. Tolias, O. Chum. Deep Shape Matching for Domain Generalization and Cross-Modal Retrieval. Under submission, 2019.

### Sketch-based image retrieval





### Category retrieval



Shape based retrieval cannot do that  $\ensuremath{\mathfrak{S}}$ 



### Standard image search can do that for years already

0.4 sec to type 'pig' vs 8 sec to draw a 'pig' sketch

### Training without a single sketch







## Training without a single sketch







#### **Positive (from geometrically verified images)**







CNN Siamese learning contrastive loss



Negative (similar edge maps of different landmarks)











### EdgeMAC architecture



# Results on Flickr15k



[21] Hu & Collomosse: A performance evaluation of gradient field hog descriptor for sketch based image retrieval. CVIU'13



| Method                            | Dim  | mAP  |  |  |  |  |  |
|-----------------------------------|------|------|--|--|--|--|--|
| Hand-crafted methods              |      |      |  |  |  |  |  |
| GF-HOG [21]                       | n/a  | 12.2 |  |  |  |  |  |
| S-HELO [37]                       | 1296 | 12.4 |  |  |  |  |  |
| HLR+S+C+R [51]                    | n/a  | 17.1 |  |  |  |  |  |
| GF-HOG extended [6]               | n/a  | 18.2 |  |  |  |  |  |
| PerceptualEdge [32]               | 3780 | 18.4 |  |  |  |  |  |
| LKS [38]                          | 1350 | 24.5 |  |  |  |  |  |
| AFM [47]                          | 243  | 30.4 |  |  |  |  |  |
| CNN-based methods                 |      |      |  |  |  |  |  |
| Sketch-a-Net+EdgeBox [5]          | 5120 | 27.0 |  |  |  |  |  |
| Siamese network [33]              | 64   | 19.5 |  |  |  |  |  |
| Shoes network [53] <sup>†</sup>   | 256  | 29.9 |  |  |  |  |  |
| Chairs network [53] <sup>†</sup>  | 256  | 29.8 |  |  |  |  |  |
| Sketchy network [39] <sup>†</sup> | 1024 | 34.0 |  |  |  |  |  |
| Quadruplet network [41]           | 1024 | 32.2 |  |  |  |  |  |
| Triplet no-share network [7]      | 128  | 36.2 |  |  |  |  |  |
| ★ EdgeMAC                         | 512  | 46.3 |  |  |  |  |  |
| Re-ranking meth                   | ods  |      |  |  |  |  |  |
| AFM+QE [47]                       | 755  | 57.9 |  |  |  |  |  |
| Sketch-a-Net+EdgeBox+GraphQE [5]  | n/a  | 32.3 |  |  |  |  |  |
| ★ EdgeMAC+Diffusion               | n/a  | 68.9 |  |  |  |  |  |

## Results on Shoes, Chair, and Handbags

Fine-grained recognition of shoes / chairs

[53] Q. Yu et al.: Sketch me that shoe. CVPR'16.





# Conclusions

### Conclusions

### Compact image retrieval representations

- Different combinations of BoW vocabularies results in a performance improvement
- Both hard positive and hard negative examples enhance the performance of training
- Generalized-mean (GeM) pooling has become a standard pooling for retrieval, used by many in competitions such as Google Landmark Recognition / Retrieval Challenge 2018 and 2019

### • Image retrieval benchmarking

- Image retrieval is far from being solved
- Newly proposed benchmark to be used to improve future approaches

### • Targeted mismatch adversarial attack

- Newly introduced concept
- Successful attacks to partially unknown systems are achieved
- Transfer attacks to fully unseen networks are challenging

### • Shape matching

- Training without using a single sketch
- Single network used for domain generalization, generic sketch-based image retrieval or its finegrained counterpart

# Appendix

# Annotation for CNN image retrieval

• CNN pre-trained for classification task used for retrieval

[Gong et al. ECCV'14, Babenko et al. ICCV'15, Kalantidis et al. arXiv'15, Tolias et al. ICLR'16]



• Fine-tuned CNN using a dataset with landmark classes [Babenko et al. ECCV'14]



• NetVLAD: Weakly supervised fine-tuned CNN using GPS tags [Arandjelovic et al. CVPR'16]



• We propose: automatic annotations for CNN training





### BoW vs CNN for small objects





BoW+geometry

### Adversarial Attack

### *c* – carrier t – target

- Non-targeted misclassification [Szegedy et al. ICLR'14]
- Targeted misclassification [Szegedy et al. ICLR'14]

Non-targeted mismatch

[Liu et al. arXiv'19; Li et al. arXiv'18]

$$L_{\rm nc}(\mathbf{x}_c, y_c; \mathbf{x}) = -\ell_{\rm ce}(f(\mathbf{x}), y_c) + \lambda ||\mathbf{x} - \mathbf{x}_c||^2$$

$$L_{tc}(\mathbf{x}_c, y_t; \mathbf{x}) = \ell_{ce}(f(\mathbf{x}), y_t) + \lambda ||\mathbf{x} - \mathbf{x}_c||^2$$

$$L_{\rm nr}(\mathbf{x}_c; \mathbf{x}) = \ell_{\rm nr}(\mathbf{x}, \mathbf{x}_c) + \lambda ||\mathbf{x} - \mathbf{x}_c||^2$$
$$= \mathbf{h}_{\mathbf{x}}^{\top} \mathbf{h}_{\mathbf{x}_c} + \lambda ||\mathbf{x} - \mathbf{x}_c||^2$$

$$L_{tr}(\mathbf{x}_c, \mathbf{x}_t; \mathbf{x}) = \ell_{tr}(\mathbf{x}, \mathbf{x}_t) + \lambda ||\mathbf{x} - \mathbf{x}_c||^2$$

- Different loss functions
  - Global descriptor
  - Activation tensor
  - Activation histogram



$$\ell_{\text{desc}}(\mathbf{x}, \mathbf{x}_t) = 1 - \mathbf{h}_{\mathbf{x}}^{\top} \mathbf{h}_{\mathbf{x}_t}$$
$$\ell_{\text{tens}}(\mathbf{x}, \mathbf{x}_t) = \frac{||\mathbf{g}_{\mathbf{x}} - \mathbf{g}_{\mathbf{x}_t}||^2}{w \cdot h \cdot d}$$
$$\ell_{\text{hist}}(\mathbf{x}, \mathbf{x}_t) = \frac{1}{d} \sum_{i=1}^d ||u(\mathbf{g}_{\mathbf{x}}, \mathbf{b})_i - u(\mathbf{g}_{\mathbf{x}_t}, \mathbf{b})_i||$$

## CNN image retrieval components

- Image resolution: single, multi, high-frequency removal by Gaussian blurring
- Feature extraction: Fully Convolutional Network (FCN), AlexNet, VGG, ResNet
- Pooling: MAC, SpOC, GeM, R-MAC, CroW
- Whitening: post-processing
- Ensembles: combination of different architecture choices

| Attack                                                      | Test                                               | $\mathcal{R}$ Oxford | $\mathcal{R}$ Paris | Holidays    | Copydays    |
|-------------------------------------------------------------|----------------------------------------------------|----------------------|---------------------|-------------|-------------|
| $(\mathcal{A}, L_{\text{hist}}^{\mathfrak{S}_2}, 0)$        | $[\mathcal{A}, \operatorname{GeM}, \mathcal{S}_0]$ | 26.9 / +0.2          | 41.3 / -1.2         | 81.5 / +0.2 | 80.4 / -0.4 |
|                                                             | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -0.7          | 46.9 / -0.4         | 82.9 / -0.3 | 69.3 / -0.7 |
| $(\mathcal{R}, L^{\hat{\mathcal{S}}_2}_{\text{GeM}}, 0)$    | [ <i>R</i> ,GeM,768]                               | 24.0 / -2.5          | 48.0 / -3.9         | 81.7 / -4.4 | 75.6 / -2.8 |
|                                                             | [R,GeM,512]                                        | 22.4 / -6.7          | 49.7 /-11.1         | 82.8 / -0.6 | 82.1 /-10.7 |
|                                                             | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -1.2          | 46.9 / -1.9         | 82.9 / -0.6 | 69.3 / -1.3 |
| $(\mathcal{R}, L_{\text{hist}}^{\mathcal{S}_2}, 0)$         | [ <i>R</i> ,GeM,768]                               | 24.0 / -3.7          | 48.0 / -7.2         | 81.7 / -2.3 | 75.6 / -7.1 |
|                                                             | [R,GeM,512]                                        | 22.4 /-11.2          | 49.7 /-20.7         | 82.8 /-17.1 | 82.1 /-20.6 |
|                                                             | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -1.4          | 46.9 / -1.8         | 82.9 / -2.4 | 69.3 / -1.3 |
| $(\mathcal{R}, L_{	ext{hist}}^{\hat{\mathcal{S}}_2}, 0)$    | [ <i>R</i> ,GeM,768]                               | 24.0 / -5.3          | 48.0 / -6.0         | 81.7 / -1.7 | 75.6 / -4.2 |
|                                                             | [R,GeM,512]                                        | 22.4 / -7.4          | 49.7 /-11.9         | 82.8 / -4.9 | 82.1 /-11.3 |
| $(\mathcal{R}, L^{\hat{\mathcal{S}}_2}_{\mathcal{P}}, 0)$   |                                                    | 22.0 / -1.1          | 45.0 / -0.5         | 81.0 / +0.9 | 67.0 / -1.6 |
| $(\mathcal{R}, L_{\mathrm{hist}}^{\hat{\mathcal{S}}_2}, 0)$ | $[\mathcal{R}, CroW, \mathcal{S}_0]$               | 22.0 / -0.3          | 45.0 / -0.8         | 81.0 / +1.3 | 67.0 / -1.0 |
| $(\mathcal{R}, L_{\text{tens}}^{\mathcal{S}_2}, 0)$         |                                                    | 22.0 / -0.7          | 45.0 / -0.0         | 81.0 / -0.6 | 67.0 / -3.0 |
|                                                             | $[\mathcal{A}, \operatorname{GeM}, \mathcal{S}_0]$ | 26.9 / -2.3          | 41.3 / -5.5         | 81.5 / -3.1 | 80.4 / -4.9 |
| $(\mathcal{E}, L_{	ext{hist}}^{\hat{\mathcal{S}}_2}, 0)$    | $[\mathcal{R}, CroW, \mathcal{S}_0]$               | 22.0 / -1.1          | 45.0 / -0.8         | 81.0 / +1.0 | 67.0 / -0.8 |
|                                                             | $[\mathcal{V}, \text{GeM}, \mathcal{S}_0]$         | 38.1 /-34.9          | 54.0 /-47.4         | 85.7 /-72.6 | 80.0 /-72.9 |

### Optimizing for histogram on par with optimizing for global descriptor with known test-pooling

| Attack                                                    | Test                                               | $\mathcal{R}$ Oxford | ${\cal R}$ Paris | Holidays    | Copydays    |  |
|-----------------------------------------------------------|----------------------------------------------------|----------------------|------------------|-------------|-------------|--|
| $(\mathcal{A}, L_{\text{hist}}^{\mathcal{S}_2}, 0)$       | $[\mathcal{A}, \operatorname{GeM}, \mathcal{S}_0]$ | 26.9 / +0.2          | 41.3 / -1.2      | 81.5 / +0.2 | 80.4 / -0.4 |  |
|                                                           | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -0.7          | 46.9 / -0.4      | 82.9 / -0.3 | 69.3 / -0.7 |  |
| $(\mathcal{R}, L^{\hat{\mathcal{S}}_2}_{\text{GeM}}, 0)$  | [ <i>R</i> ,GeM,768]                               | 24.0 / -2.5          | 48.0 / -3.9      | 81.7 / -4.4 | 75.6 / -2.8 |  |
|                                                           | [R,GeM,512]                                        | 22.4 / -6.7          | 49.7 /-11.1      | 82.8 / -0.6 | 82.1 /-10.7 |  |
|                                                           | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -1.2          | 46.9 / -1.9      | 82.9 / -0.6 | 69.3 / -1.3 |  |
| $(\mathcal{R}, L_{\mathrm{hist}}^{\mathcal{S}_2}, 0)$     | [ <i>R</i> ,GeM,768]                               | 24.0 / -3.7          | 48.0 / -7.2      | 81.7 / -2.3 | 75.6 / -7.1 |  |
|                                                           | [R,GeM,512]                                        | 22.4 /-11.2          | 49.7 /-20.7      | 82.8 /-17.1 | 82.1 /-20.6 |  |
|                                                           | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -1.4          | 46.9 / -1.8      | 82.9 / -2.4 | 69.3 / -1.3 |  |
| $(\mathcal{R}, L_{	ext{hist}}^{\hat{s}_2}, 0)$            | [ <i>R</i> ,GeM,768]                               | 24.0 / -5.3          | 48.0 / -6.0      | 81.7 / -1.7 | 75.6 / -4.2 |  |
|                                                           | [R,GeM,512]                                        | 22.4 / -7.4          | 49.7 /-11.9      | 82.8 / -4.9 | 82.1 /-11.3 |  |
| $(\mathcal{R}, L^{\hat{\mathcal{S}}_2}_{\mathcal{P}}, 0)$ |                                                    | 22.0 / -1.1          | 45.0 / -0.5      | 81.0 / +0.9 | 67.0 / -1.6 |  |
| $(\mathcal{R}, L_{	ext{hist}}^{\hat{s}_2}, 0)$            | $[\mathcal{R}, CroW, \mathcal{S}_0]$               | 22.0 / -0.3          | 45.0 / -0.8      | 81.0 / +1.3 | 67.0 / -1.0 |  |
| $(\mathcal{R}, L_{\text{tens}}^{\mathcal{S}_2}, 0)$       |                                                    | 22.0 / -0.7          | 45.0 / -0.0      | 81.0 / -0.6 | 67.0 / -3.0 |  |
|                                                           | $[\mathcal{A}, \operatorname{GeM}, \mathcal{S}_0]$ | 26.9 / -2.3          | 41.3 / -5.5      | 81.5 / -3.1 | 80.4 / -4.9 |  |
| $(\mathcal{E}, L_{	ext{hist}}^{\hat{\mathcal{S}}_2}, 0)$  | $[\mathcal{R}, CroW, \mathcal{S}_0]$               | 22.0 / -1.1          | 45.0 / -0.8      | 81.0 / +1.0 | 67.0 / -0.8 |  |
|                                                           | $[\mathcal{V}, \text{GeM}, \mathcal{S}_0]$         | 38.1 /-34.9          | 54.0 /-47.4      | 85.7 /-72.6 | 80.0 /-72.9 |  |

### High-frequency removal by Gaussian blurring is essential when evaluating on unknown test-resolutions

| Attack                                                      | Test                                               | $\mathcal{R}Oxford$ | ${\cal R}$ Paris | Holidays    | Copydays    |
|-------------------------------------------------------------|----------------------------------------------------|---------------------|------------------|-------------|-------------|
| $(\mathcal{A}, L_{\mathrm{hist}}^{\mathcal{S}_2}, 0)$       | $[\mathcal{A}, \operatorname{GeM}, \mathcal{S}_0]$ | 26.9 / +0.2         | 41.3 / -1.2      | 81.5 / +0.2 | 80.4 / -0.4 |
|                                                             | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -0.7         | 46.9 / -0.4      | 82.9 / -0.3 | 69.3 / -0.7 |
| $(\mathcal{R}, L^{\hat{\mathcal{S}}_2}_{\text{GeM}}, 0)$    | [ <i>R</i> ,GeM,768]                               | 24.0 / -2.5         | 48.0 / -3.9      | 81.7 / -4.4 | 75.6 / -2.8 |
|                                                             | [R,GeM,512]                                        | 22.4 / -6.7         | 49.7 /-11.1      | 82.8 / -0.6 | 82.1 /-10.7 |
|                                                             | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -1.2         | 46.9 / -1.9      | 82.9 / -0.6 | 69.3 / -1.3 |
| $(\mathcal{R}, L_{\text{hist}}^{\mathcal{S}_2}, 0)$         | [ <i>R</i> ,GeM,768]                               | 24.0 / -3.7         | 48.0 / -7.2      | 81.7 / -2.3 | 75.6 / -7.1 |
|                                                             | [R,GeM,512]                                        | 22.4 /-11.2         | 49.7 /-20.7      | 82.8 /-17.1 | 82.1 /-20.6 |
|                                                             | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -1.4         | 46.9 / -1.8      | 82.9 / -2.4 | 69.3 / -1.3 |
| $(\mathcal{R}, L_{	ext{hist}}^{\hat{\mathcal{S}}_2}, 0)$    | [ <i>R</i> ,GeM,768]                               | 24.0 / -5.3         | 48.0 / -6.0      | 81.7 / -1.7 | 75.6 / -4.2 |
|                                                             | [R,GeM,512]                                        | 22.4 / -7.4         | 49.7 /-11.9      | 82.8 / -4.9 | 82.1 /-11.3 |
| $(\mathcal{R}, L^{\hat{\mathcal{S}}_2}_{\mathcal{P}}, 0)$   |                                                    | 22.0 / -1.1         | 45.0 / -0.5      | 81.0 / +0.9 | 67.0 / -1.6 |
| $(\mathcal{R}, L_{\mathrm{hist}}^{\hat{\mathcal{S}}_2}, 0)$ | $[\mathcal{R}, \mathrm{CroW}, \mathcal{S}_0]$      | 22.0 / -0.3         | 45.0 / -0.8      | 81.0 / +1.3 | 67.0 / -1.0 |
| $(\mathcal{R}, L_{\text{tens}}^{\mathcal{S}_2}, 0)$         |                                                    | 22.0 / -0.7         | 45.0 / -0.0      | 81.0 / -0.6 | 67.0 / -3.0 |
|                                                             | $[\mathcal{A}, \text{GeM}, \mathcal{S}_0]$         | 26.9 / -2.3         | 41.3 / -5.5      | 81.5 / -3.1 | 80.4 / -4.9 |
| $(\mathcal{E}, L_{	ext{hist}}^{\hat{\mathcal{S}}_2}, 0)$    | $[\mathcal{R}, CroW, \mathcal{S}_0]$               | 22.0 / -1.1         | 45.0 / -0.8      | 81.0 / +1.0 | 67.0 / -0.8 |
|                                                             | $[\mathcal{V}, \text{GeM}, \mathcal{S}_0]$         | 38.1 /-34.9         | 54.0 /-47.4      | 85.7 /-72.6 | 80.0 /-72.9 |

### Robust to unknown test-pooling NOT robust to unknown test-FCN

| Attack                                                   | Test                                               | $\mathcal{R}$ Oxford | $\mathcal{R}$ Paris | Holidays    | Copydays    |
|----------------------------------------------------------|----------------------------------------------------|----------------------|---------------------|-------------|-------------|
| $(\mathcal{A}, L_{\mathrm{hist}}^{\mathscr{S}_2}, 0)$    | $[\mathcal{A}, \operatorname{GeM}, \mathcal{S}_0]$ | 26.9 / +0.2          | 41.3 / -1.2         | 81.5 / +0.2 | 80.4 / -0.4 |
|                                                          | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -0.7          | 46.9 / -0.4         | 82.9 / -0.3 | 69.3 / -0.7 |
| $(\mathcal{R}, L^{\hat{\mathcal{S}}_2}_{\text{GeM}}, 0)$ | [ <i>R</i> ,GeM,768]                               | 24.0 / -2.5          | 48.0 / -3.9         | 81.7 / -4.4 | 75.6 / -2.8 |
|                                                          | [R,GeM,512]                                        | 22.4 / -6.7          | 49.7 /-11.1         | 82.8 / -0.6 | 82.1 /-10.7 |
|                                                          | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -1.2          | 46.9 / -1.9         | 82.9 / -0.6 | 69.3 / -1.3 |
| $(\mathcal{R}, L_{\mathrm{hist}}^{\mathcal{S}_2}, 0)$    | [ <i>R</i> ,GeM,768]                               | 24.0 / -3.7          | 48.0 / -7.2         | 81.7 / -2.3 | 75.6 / -7.1 |
|                                                          | [R,GeM,512]                                        | 22.4 /-11.2          | 49.7 /-20.7         | 82.8 /-17.1 | 82.1 /-20.6 |
|                                                          | $[\mathcal{R}, \text{GeM}, \mathcal{S}_0]$         | 21.5 / -1.4          | 46.9 / -1.8         | 82.9 / -2.4 | 69.3 / -1.3 |
| $(\mathcal{R}, L_{	ext{hist}}^{\hat{s}_2}, 0)$           | [ <i>R</i> ,GeM,768]                               | 24.0 / -5.3          | 48.0 / -6.0         | 81.7 / -1.7 | 75.6 / -4.2 |
|                                                          | [R,GeM,512]                                        | 22.4 / -7.4          | 49.7 /-11.9         | 82.8 / -4.9 | 82.1 /-11.3 |
| $(\mathcal{R}, L^{s_2}_{\mathcal{P}}, 0)$                |                                                    | 22.0 / -1.1          | 45.0 / -0.5         | 81.0 / +0.9 | 67.0 / -1.6 |
| $(\mathcal{R}, L_{	ext{hist}}^{\hat{s}_2}, 0)$           | $[\mathcal{R}, CroW, \mathcal{S}_0]$               | 22.0 / -0.3          | 45.0 / -0.8         | 81.0 / +1.3 | 67.0 / -1.0 |
| $(\mathcal{R}, L_{\text{tens}}^{\mathcal{S}_2}, 0)$      |                                                    | 22.0 / -0.7          | 45.0 / -0.0         | 81.0 / -0.6 | 67.0 / -3.0 |
|                                                          | $[\mathcal{A}, \operatorname{GeM}, \mathcal{S}_0]$ | 26.9 / -2.3          | 41.3 / -5.5         | 81.5 / -3.1 | 80.4 / -4.9 |
| $(\mathcal{E}, L_{	ext{hist}}^{\hat{\mathcal{S}}_2}, 0)$ | $[\mathcal{R}, CroW, \mathcal{S}_0]$               | 22.0 / -1.1          | 45.0 / -0.8         | 81.0 / +1.0 | 67.0 / -0.8 |
|                                                          | $[\mathcal{V}, \text{GeM}, \mathcal{S}_0]$         | 38.1 /-34.9          | 54.0 /-47.4         | 85.7 /-72.6 | 80.0 /-72.9 |

## Matching sketches to images

Classical Approach shape matching



Modern Approach end-to-end deep learning



- + category + similarity
- man-years of annotation
- very difficult to train



shape information only simple cost & training

### Performance on Flickr15k



Data augmentation Descriptor average over reflection Average over 3 scales Diffusion on image MAC (not on edgeMAC)

### Results on Shoes, Chair, and Handbags

| Mathad                                       |      | Shoes  |         | Ch     | airs    | Handbags |         |
|----------------------------------------------|------|--------|---------|--------|---------|----------|---------|
| Method                                       | Dim  | acc.@1 | acc.@10 | acc.@1 | acc.@10 | acc.@1   | acc.@10 |
| BoW-HOG $+ \operatorname{rankSVM} [22]$      | 500  | 17.4   | 67.8    | 28.9   | 67.0    | 2.4      | 10.7    |
| Dense-HOG $+ \text{rankSVM} [22]$            | 200K | 24.4   | 65.2    | 52.6   | 93.8    | 15.5     | 40.5    |
| Sketch-a-Net $+ \operatorname{rankSVM} [22]$ | 512  | 20.0   | 62.6    | 47.4   | 82.5    | 9.5      | 44.1    |
| CCA-3V-HOG + PCA [18]                        | n/a  | 15.8   | 63.2    | 53.2   | 90.3    | _        | _       |
| Shoes net $[22]^{\dagger}$                   | 256  | 52.2   | 92.2    | 65.0   | 92.8    | 23.2     | 59.5    |
| Chairs net $[22]^{\dagger}$                  | 256  | 30.4   | 75.7    | 72.2   | 99.0    | 26.2     | 58.3    |
| Handbags net 32                              | 256  | _      | _       | _      | _       | 39.9     | 82.1    |
| Shoes $net + CFF + HOLEF$ [32]               | 512  | 61.7   | 94.8    | —      | —       | —        | —       |
| Chairs $net + CFF + HOLEF$ [32]              | 512  | _      | _       | 81.4   | 95.9    | _        | _       |
| Handbags net $+ CFF + HOLEF$ [32]            | 512  | —      | _       | _      | _       | 49.4     | 82.7    |
| $\star$ EdgeMAC                              | 512  | 40.0   | 76.5    | 85.6   | 95.9    | 35.1     | 70.8    |
| $\star$ EdgeMAC + whitening                  | 512  | 54.8   | 92.2    | 85.6   | 97.9    | 51.2     | 85.7    |

### Beyond sketches

### Image-based

### Edge-based

